IUBMB Enzyme Nomenclature


Accepted name: glycerol-3-phosphate dehydrogenase

Reaction: sn-glycerol 3-phosphate + a quinone = glycerone phosphate + a quinol

Glossary: glycerone phosphate = dihydroxyacetone phosphate = 3-hydroxy-2-oxopropyl phosphate

Other name(s): α-glycerophosphate dehydrogenase; α-glycerophosphate dehydrogenase (acceptor); anaerobic glycerol-3-phosphate dehydrogenase; DL-glycerol 3-phosphate oxidase (misleading); FAD-dependent glycerol-3-phosphate dehydrogenase; FAD-dependent sn-glycerol-3-phosphate dehydrogenase; FAD-GPDH; FAD-linked glycerol 3-phosphate dehydrogenase; FAD-linked L-glycerol-3-phosphate dehydrogenase; flavin-linked glycerol-3-phosphate dehydrogenase; flavoprotein-linked L-glycerol 3-phosphate dehydrogenase; glycerol 3-phosphate cytochrome c reductase (misleading); glycerol phosphate dehydrogenase; glycerol phosphate dehydrogenase (acceptor); glycerol phosphate dehydrogenase (FAD); glycerol-3-phosphate CoQ reductase; glycerol-3-phosphate dehydrogenase (flavin-linked); glycerol-3-phosphate:CoQ reductase; glycerophosphate dehydrogenase; L-3-glycerophosphate-ubiquinone oxidoreductase; L-glycerol-3-phosphate dehydrogenase (ambiguous); L-glycerophosphate dehydrogenase; mGPD; mitochondrial glycerol phosphate dehydrogenase; NAD+-independent glycerol phosphate dehydrogenase; pyridine nucleotide-independent L-glycerol 3-phosphate dehydrogenase; sn-glycerol 3-phosphate oxidase (misleading); sn-glycerol-3-phosphate dehydrogenase; sn-glycerol-3-phosphate:(acceptor) 2-oxidoreductase; sn-glycerol-3-phosphate:acceptor 2-oxidoreductase

Systematic name: sn-glycerol 3-phosphate:quinone oxidoreductase

Comments: This flavin-dependent dehydrogenase is an essential membrane enzyme, functioning at the central junction of glycolysis, respiration and phospholipid biosynthesis. In bacteria, the enzyme is localized to the cytoplasmic membrane [6], while in eukaryotes it is tightly bound to the outer surface of the inner mitochondrial membrane [2]. In eukaryotes, this enzyme, together with the cytosolic enzyme EC, glycerol-3-phosphate dehydrogenase (NAD+), forms the glycerol-3-phosphate shuttle by which NADH produced in the cytosol, primarily from glycolysis, can be reoxidized to NAD+ by the mitochondrial electron-transport chain [3]. This shuttle plays a critical role in transferring reducing equivalents from cytosolic NADH into the mitochondrial matrix [7,8]. Insect flight muscle uses only CoQ10 as the physiological quinone whereas hamster and rat mitochondria use mainly CoQ9 [4]. The enzyme is activated by calcium [3].

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9001-49-4


1. Ringler, R.L. Studies on the mitochondrial α-glycerophosphate dehydrogenase. II. Extraction and partial purification of the dehydrogenase from pig brain. J. Biol. Chem. 236 (1961) 1192-1198. [PMID: 13741763]

2. Schryvers, A., Lohmeier, E. and Weiner, J.H. Chemical and functional properties of the native and reconstituted forms of the membrane-bound, aerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. J. Biol. Chem. 253 (1978) 783-788. [PMID: 340460]

3. MacDonald, M.J. and Brown, L.J. Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied. Arch. Biochem. Biophys. 326 (1996) 79-84. [PMID: 8579375]

4. Rauchová, H., Fato, R., Drahota, Z. and Lenaz, G. Steady-state kinetics of reduction of coenzyme Q analogs by glycerol-3-phosphate dehydrogenase in brown adipose tissue mitochondria. Arch. Biochem. Biophys. 344 (1997) 235-241. [PMID: 9244403]

5. Shen, W., Wei, Y., Dauk, M., Zheng, Z. and Zou, J. Identification of a mitochondrial glycerol-3-phosphate dehydrogenase from Arabidopsis thaliana: evidence for a mitochondrial glycerol-3-phosphate shuttle in plants. FEBS Lett. 536 (2003) 92-96. [PMID: 12586344]

6. Walz, A.C., Demel, R.A., de Kruijff, B. and Mutzel, R. Aerobic sn-glycerol-3-phosphate dehydrogenase from Escherichia coli binds to the cytoplasmic membrane through an amphipathic α-helix. Biochem. J. 365 (2002) 471-479. [PMID: 11955283]

7. Ansell, R., Granath, K., Hohmann, S., Thevelein, J.M. and Adler, L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16 (1997) 2179-2187. [PMID: 9171333]

8. Larsson, C., Påhlman, I.L., Ansell, R., Rigoulet, M., Adler, L. and Gustafsson, L. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14 (1998) 347-357. [PMID: 9559543]

[EC created 1961 as EC, transferred 1965 to EC, transferred 2009 to EC]

Return to EC 1.1.5 home page
Return to EC 1.1 home page
Return to EC 1 home page
Return to Enzymes home page
Return to IUBMB Biochemical Nomenclature home page