Reaction: (1) 13-deoxydaunorubicin + NADPH + H+ + O2 = 13-dihydrodaunorubicin + NADP+ + H2O
(2) 13-dihydrodaunorubicin + NADPH + H+ + O2 = daunorubicin + NADP+ + 2 H2O
For diagram of reaction click here.
Glossary: 13-dihydrodaunorubicin = daunorubicinol = (1S,3S)-3,5,12-trihydroxy-3-(1-hydroxyethyl)-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside
13-deoxydaunorubicin = (1S,3S)-3-ethyl-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside
daunorubicin = (1S,3S)-3-acetyl-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside
Other name(s): DoxA
Systematic name: 13-deoxydaunorubicin,NADPH:oxygen oxidoreductase (13-hydroxylating)
Comments: The enzymes from the Gram-positive bacteria Streptomyces sp. C5 and Streptomyces peucetius show broad substrate specificity for structures based on an anthracycline aglycone, but have a strong preference for 4-methoxy anthracycline intermediates (13-deoxydaunorubicin and 13-dihydrodaunorubicin) over their 4-hydroxy analogues (13-deoxycarminomycin and 13-dihydrocarminomycin), as well as a preference for substrates hydroxylated at the C-13 rather than the C-14 position.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number:
References:
1. Walczak, R.J., Dickens, M.L., Priestley, N.D. and Strohl, W.R. Purification, properties, and characterization of recombinant Streptomyces sp. strain C5 DoxA, a cytochrome P-450 catalyzing multiple steps in doxorubicin biosynthesis. J. Bacteriol. 181 (1999) 298-304. [PMID: 9864343]
2. Dickens, M.L., Priestley, N.D. and Strohl, W.R. In vivo and in vitro bioconversion of ε-rhodomycinone glycoside to doxorubicin: functions of DauP, DauK, and DoxA. J. Bacteriol. 179 (1997) 2641-2650. [PMID: 9098063]