IUBMB Enzyme Nomenclature

EC 1.3.7.12

Accepted name: red chlorophyll catabolite reductase

Reaction: primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster = red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+

For diagram of reaction click here.

Glossary: red chlorophyll catabolite = RCC = (7S,8S,101R)-8-(2-carboxyethyl)-17-ethyl-19-formyl-101-(methoxycarbonyl)-3,7,13,18-tetramethyl-2-vinyl-8,23-dihydro-7H-10,12-ethanobiladiene-ab-1,102(21H)-dione
primary fluorescent chlorophyll catabolite = pFCC = (82R,12S,13S)-12-(2-carboxyethyl)-3-ethyl-1-formyl-82-(methoxycarbonyl)-2,7,13,17-tetramethyl-18-vinyl-12,13-dihydro-8,10-ethanobilene-b-81,19(16H)-dione

Other name(s): RCCR; RCC reductase; red Chl catabolite reductase

Systematic name: primary fluorescent chlorophyll catabolite:ferredoxin oxidoreductase

Comments: The enzyme participates in chlorophyll degradation, which occurs during leaf senescence and fruit ripening in higher plants. The reaction requires reduced ferredoxin, which is generated from NADPH produced either through the pentose-phosphate pathway or by the action of photosystem I [1,2]. This reaction takes place while red chlorophyll catabolite is still bound to EC 1.14.15.17, pheophorbide a oxygenase [3]. Depending on the plant species used as the source of enzyme, one of two possible C-1 epimers of primary fluorescent chlorophyll catabolite (pFCC), pFCC-1 or pFCC-2, is normally formed, with all genera or species within a family producing the same isomer [3,4]. After modification and export, pFCCs are eventually imported into the vacuole, where the acidic environment causes their non-enzymic conversion into colourless breakdown products called non-fluorescent chlorophyll catabolites (NCCs) [2].

Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number:

References:

1. Rodoni, S., Mühlecker, W., Anderl, M., Kräutler, B., Moser, D., Thomas, H., Matile, P. and Hörtensteiner, S. Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymic steps. Plant Physiol. 115 (1997) 669-676. [PMID: 12223835]

2. Wüthrich, K.L., Bovet, L., Hunziker, P.E., Donnison, I.S. and Hörtensteiner, S. Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J. 21 (2000) 189-198. [PMID: 10743659]

3. Pružinská, A., Anders, I., Aubry, S., Schenk, N., Tapernoux-Lüthi, E., Müller, T., Kräutler, B. and Hörtensteiner, S. In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19 (2007) 369-387. [PMID: 17237353]

4. Hörtensteiner, S. Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 57 (2006) 55-77. [PMID: 16669755]

5. Rodoni, S., Vicentini, F., Schellenberg, M., Matile, P. and Hörtensteiner, S. Partial purification and characterization of red chlorophyll catabolite reductase, a stroma protein involved in chlorophyll breakdown. Plant Physiol. 115 (1997) 677-682. [PMID: 12223836]

[EC 1.3.7.12 created 2007 as EC 1.3.1.80, transferred 2016 to EC 1.3.7.12]


Return to EC 1.3.7 home page
Return to EC 1.3 home page
Return to EC 1 home page
Return to Enzymes home page
Return to IUBMB Biochemical Nomenclature home page