IUBMB Enzyme Nomenclature

EC 2.2.1.10

Accepted name: 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate synthase

Reaction: L-aspartate 4-semialdehyde + 1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate = 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate + 2,3-dioxopropyl phosphate

For diagram of reaction click here.

Glossary: 1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate = 6-deoxy-5-ketofructose 1-phosphate
2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate = 2-amino-2,3,7-trideoxy-D-lyxo-hept-6-ulosonate

Other name(s): ADH synthase; ADHS; MJ0400 (gene name)

Systematic name: L-aspartate 4-semialdehyde:1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate methylglyoxaltransferase

Comments: The enzyme plays a key role in an alternative pathway of the biosynthesis of 3-dehydroquinate (DHQ), which is involved in the canonical pathway for the biosynthesis of aromatic amino acids. The enzyme can also catalyse the reaction of EC 4.1.2.13, fructose-bisphosphate aldolase.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number:

References:

1. White, R.H. L-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. Biochemistry 43 (2004) 7618-7627. [PMID: 15182204]

2. Samland, A.K., Wang, M. and Sprenger, G.A. MJ0400 from Methanocaldococcus jannaschii exhibits fructose-1,6-bisphosphate aldolase activity. FEMS Microbiol. Lett. 281 (2008) 36-41. [PMID: 18318840]

3. Morar, M., White, R.H. and Ealick, S.E. Structure of 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid synthase, a catalyst in the archaeal pathway for the biosynthesis of aromatic amino acids. Biochemistry 46 (2007) 10562-10571. [PMID: 17713928]

[EC 2.2.1.10 created 2012]


Return to EC 2.2.1 home page
Return to EC 2.2 home page
Return to EC 2 home page
Return to Enzymes home page
Return to IUBMB Biochemical Nomenclature home page