Reaction: feruloyl-CoA + H2O = vanillin + acetyl-CoA (overall reaction)
(1a) feruloyl-CoA + H2O = 3-hydroxy-3-(4-hydroxy-3-methoxyphenyl)propanoyl-CoA
(1b) 3-hydroxy-3-(4-hydroxy-3-methoxyphenyl)propanoyl-CoA = vanillin + acetyl-CoA
For diagram of reaction click here
Other name(s): hydroxycinnamoyl-CoA hydratase lyase; enoyl-CoA hydratase/aldolase; HCHL; ferB (gene name); couA (gene name)
Systematic name: feruloyl-CoA hydro-lyase/vanillin-lyase (acetyl-CoA-forming)
Comments: The enzyme is a member of the enoyl-CoA hydratase/isomerase superfamily. It catalyses a two-step process involving first the hydration of the double bond of feruloyl-CoA and then the cleavage of the resultant β-hydroxy thioester by retro-aldol reaction. (E)-caffeoyl-CoA and (E)-4-coumaroyl-CoA are also substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number:
References:
1. Pometto, A.L. and Crawford, D.L. Whole-cell bioconversion of vanillin to vanillic acid by Streptomyces viridosporus. Appl. Environ. Microbiol. 45 (1983) 1582-1585. [PMID: 6870241]
2. Narbad, A. and Gasson, M.J. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens. Microbiology 144 (1998) 1397-1405. [PMID: 9611814]
3. Gasson, M.J., Kitamura, Y., McLauchlan, W.R., Narbad, A., Parr, A.J., Parsons, E.L., Payne, J., Rhodes, M.J. and Walton, N.J. Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J. Biol. Chem. 273 (1998) 4163-4170. [PMID: 9461612]
4. Overhage, J., Priefert, H. and Steinbuchel, A. Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199. Appl. Environ. Microbiol. 65 (1999) 4837-4847. [PMID: 10543794]
5. Bennett, J.P., Bertin, L., Moulton, B., Fairlamb, I.J., Brzozowski, A.M., Walton, N.J. and Grogan, G. A ternary complex of hydroxycinnamoyl-CoA hydratase-lyase (HCHL) with acetyl-CoA and vanillin gives insights into substrate specificity and mechanism. Biochem. J. 414 (2008) 281-289. [PMID: 18479250]
6. Hirakawa, H., Schaefer, A.L., Greenberg, E.P. and Harwood, C.S. Anaerobic p-coumarate degradation by Rhodopseudomonas palustris and identification of CouR, a MarR repressor protein that binds p-coumaroyl coenzyme A. J. Bacteriol. 194 (2012) 1960-1967. [PMID: 22328668]
7. Yang, W., Tang, H., Ni, J., Wu, Q., Hua, D., Tao, F. and Xu, P. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin. PLoS One 8 (2013) e67339. [PMID: 23840666]