IUBMB Enzyme Nomenclature

EC 4.2.1.115

Accepted name: UDP-N-acetylglucosamine 4,6-dehydratase (inverting)

Reaction: UDP-N-acetyl-α-D-glucosamine = UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose + H2O

For diagram of reaction click here and mechanism click here.

Glossary: pseudaminic acid = 5,7-bis(acetylamino)-3,5,7,9-tetradeoxy-L-glycero-α-L-manno-2-nonulopyranosonic acid

Other name(s): FlaA1; UDP-N-acetylglucosamine 5-inverting 4,6-dehydratase; PseB; UDP-N-acetylglucosamine hydro-lyase (inverting; UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose-forming)

Systematic name: UDP-N-acetyl-α-D-glucosamine hydro-lyase (inverting; UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose-forming)

Comments: Contains NADP+ as a cofactor. This is the first enzyme in the biosynthetic pathway of pseudaminic acid [3], a sialic-acid-like sugar that is unique to bacteria and is used by Helicobacter pylori to modify its flagellin. This enzyme plays a critical role in H. pylori's pathogenesis, being involved in the synthesis of both functional flagella and lipopolysaccharides [1,2]. It is completely inhibited by UDP-galactose. The reaction results in the chirality of the C-5 atom being inverted. It is thought that Lys-133 acts sequentially as a catalytic acid, protonating the C-6 hydroxy group and as a catalytic base, abstracting the C-5 proton, resulting in the elimination of water. This enzyme belongs to the short-chain dehydrogenase/reductase family of enzymes.

Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number:

References:

1. Ishiyama, N., Creuzenet, C., Miller, W.L., Demendi, M., Anderson, E.M., Harauz, G., Lam, J.S. and Berghuis, A.M. Structural studies of FlaA1 from Helicobacter pylori reveal the mechanism for inverting 4,6-dehydratase activity. J. Biol. Chem. 281 (2006) 24489-24495. [PMID: 16651261]

2. Schirm, M., Soo, E.C., Aubry, A.J., Austin, J., Thibault, P. and Logan, S.M. Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol. Microbiol. 48 (2003) 1579-1592. [PMID: 12791140]

3. Schoenhofen, I.C., McNally, D.J., Brisson, J.R. and Logan, S.M. Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction. Glycobiology 16 (2006) 8C-14C. [PMID: 16751642]

[EC 4.2.1.115 created 2009]


Return to EC 4.2.1 home page
Return to EC 4.2 home page
Return to EC 4 home page
Return to Enzymes home page
Return to IUBMB Biochemical Nomenclature home page