Reaction: L-glutamate 1-semialdehyde + NADP+ + tRNAGlu = L-glutamyl-tRNAGlu + NADPH + H+
For diagram click here.
Systematic name: L-glutamate-semialdehyde: NADP+ oxidoreductase (L-glutamyl-tRNAGlu-forming)
Comments: This enzyme forms part of the pathway for the biosynthesis of 5-aminolevulinate from glutamate, known as the C5 pathway. The route shown in the diagram is used in most eubacteria, and in all archaebacteria, algae and plants. However, in the α-proteobacteria, EC 2.3.1.37, 5-aminolevulinate synthase, is used in an alternative route to produce the product 5-aminolevulinate from succinyl-CoA and glycine. This route is found in the mitochondria of fungi and animals, organelles that are considered to be derived from an endosymbiotic α-proteobacterium. Although higher plants do not possess EC 2.3.1.37, the protistan Euglena gracilis possesses both the C5 pathway and EC 2.3.1.37.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 119940-26-0
References:
1. von Wettstein, D., Gough, S. and Kannangara, C.G. Chlorophyll biosynthesis. Plant Cell 7 (1995) 1039-1057. [PMID: 12242396]
2. Pontoppidan, B. and Kannangara, C.G. Purification and partial characterisation of barley glutamyl-tRNAGlu reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur. J. Biochem. 225 (1994) 529-537. [PMID: 7957167]
3. Schauer, S., Chaturvedi, S., Randau, L., Moser, J., Kitabatake, M., Lorenz, S., Verkamp, E., Schubert, W.D., Nakayashiki, T., Murai, M., Wall, K., Thomann, H.-U., Heinz, D.W., Inokuchi, H, Söll, D. and Jahn, D. Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J. Biol. Chem. 277 (2002) 48657-48663. [PMID: 12370189]