Reaction: (S)-4-hydroxy-2-oxohexanoate = propanal + pyruvate
Other name(s): BphI
Systematic name: (S)-4-hydroxy-2-oxohexanoate pyruvate-lyase (propanal-forming)
Comments: Requires Mn2+ for maximal activity [1,2]. The enzymes from the bacteria Burkholderia xenovorans and Thermus thermophilus also perform the reaction of EC 4.1.3.39, 4-hydroxy-2-oxovalerate aldolase [1,2,6]. The enzyme forms a bifunctional complex with EC 1.2.1.87, propanal dehydrogenase (CoA-propanoylating), with a tight channel connecting the two subunits [3,4,6].
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number:
References:
1. Baker, P., Pan, D., Carere, J., Rossi, A., Wang, W. and Seah, S.Y.K. Characterization of an aldolase-dehydrogenase complex that exhibits substrate channeling in the polychlorinated biphenyls degradation pathway. Biochemistry 48 (2009) 6551-6558. [PMID: 19476337]
2. Wang, W., Baker, P. and Seah, S.Y.K. Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: substrate specificity, kinetic mechanism, and substrate channeling. Biochemistry 49 (2010) 3774-3782. [PMID: 20364820]
3. Baker, P., Carere, J. and Seah, S.Y.K. Probing the molecular basis of substrate specificity, stereospecificity, and catalysis in the class II pyruvate aldolase, BphI. Biochemistry 50 (2011) 3559-3569. [PMID: 21425833]
4. Carere, J., Baker, P. and Seah, S.Y.K. Investigating the molecular determinants for substrate channeling in BphI-BphJ, an aldolase-dehydrogenase complex from the polychlorinated biphenyls degradation pathway. Biochemistry 50 (2011) 8407-8416. [PMID: 21838275]
5. Baker, P. and Seah, S.Y.K. Rational design of stereoselectivity in the class II pyruvate aldolase BphI. J. Am. Chem. Soc. 134 (2012) 507-513. [PMID: 22081904]
6. Baker, P., Hillis, C., Carere, J. and Seah, S.Y.K. Protein-protein interactions and substrate channeling in orthologous and chimeric aldolase-dehydrogenase complexes. Biochemistry 51 (2012) 1942-1952. [PMID: 22316175]