EC 2.4.1.1 to EC 2.4.1.50See separate file for EC 2.4.1.251 to EC 2.4.1.300 and EC 2.4.1.301 to EC 2.4.1.398.
EC 2.4.1.51 to EC 2.4.1.100
EC 2.4.1.101 to EC 2.4.1.150
EC 2.4.1.151 to EC 2.4.1.200
EC 2.4.1.251 to EC 2.4.1.300
EC 2.4.1.301 to EC 2.4.1.398
Accepted name: α-1,6-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-[β-D-GlcNAc-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
For diagram of reaction click here.
Other name(s): MGAT4C (gene name); N-acetylglucosaminyltransferase VI; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase VI; uridine diphosphoacetylglucosamine-glycopeptide β-1→4-acetylglucosaminyltransferase VI; mannosyl-glycoprotein β-1,4-N-acetylglucosaminyltransferase; GnTVI; GlcNAc-T VI; UDP-N-acetyl-D-glucosamine:2,6-bis(N-acetyl-β-D-glucosaminyl)-α-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-β-D-glucosaminyl-(1→6)-[N-acetyl-β-D-glucosaminyl-(1→2)]-α-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Requires a high concentration of Mn2+ for maximal activity. The enzyme, characterized from hen oviduct membranes, participates in the processing of N-glycans in the Golgi apparatus. It transfers GlcNAc in β1-4 linkage to a D-mannose residue that already has GlcNAc residues attached at positions 2 and 6 by β linkages. No homologous enzyme appears to exist in mammals.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 119699-68-2
References:
1. Brockhausen, I., Hull, E., Hindsgaul, O., Schachter, H., Shah, R.N., Michnick, S.W. and Carver, J.P. Control of glycoprotein synthesis. Detection and characterization of a novel branching enzyme from hen oviduct, UDP-N-acetylglucosamine:GlcNAc β1-6 (GlcNAc β1-2)Man α-R (GlcNAc to Man) β-4-N-acetylglucosaminyltransferase VI. J. Biol. Chem. 264 (1989) 11211-11221. [PMID: 2525556]
2. Taguchi, T., Ogawa, T., Inoue, S., Inoue, Y., Sakamoto, Y., Korekane, H. and Taniguchi, N. Purification and characterization of UDP-GlcNAc:GlcNAcβ1-6(GlcNAcβ1-2)Manα1-R [GlcNAc to Man]-β1,4-N-acetylglucosaminyltransferase VI from hen oviduct. J. Biol. Chem. 275 (2000) 32598-32602. [PMID: 10903319]
3. Sakamoto, Y., Taguchi, T., Honke, K., Korekane, H., Watanabe, H., Tano, Y., Dohmae, N., Takio, K., Horii, A. and Taniguchi, N. Molecular cloning and expression of cDNA encoding chicken UDP-N-acetyl-D-glucosamine (GlcNAc): GlcNAcβ 1-6(GlcNAcβ 1-2)- manα 1-R[GlcNAc to man]β 1,4N-acetylglucosaminyltransferase VI. J. Biol. Chem. 275 (2000) 36029-36034. [PMID: 10962001]
Accepted name: 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-D-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one = UDP + (2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside
(2) UDP-α-D-glucose + 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one = UDP + (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside
For diagram of reaction click here.
Glossary: 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one = DIBOA
2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one = DIMBOA
(2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside = DIBOA β-D-glucoside
(2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside = DIMBOA β-D-glucoside
Other name(s): uridine diphosphoglucose-2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-glucosyltransferase; BX8; BX9; benzoxazinoid glucosyltransferase; DIMBOA glucosyltransferase
Systematic name: UDP-α-D-glucose:2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-β-D-glucosyltransferase
Comments: The enzyme is involved in the detoxification of the benzoxazinoids DIBOA (2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one) and DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one) which are stored as the respective non-toxic glucosides in the vacuoles in some plants, most commonly from the family of Poaceae (grasses). Benzoxazinoids are known to exhibit antimicrobial, antifeedant, and antiinsecticidal effects and are involved in the interaction of plants with other plants, insects, or microorganisms.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 122544-56-3
References:
1. Bailey, B.A. and Larson, R.L. Hydroxamic acid glucosyltransferases from maize seedlings. Plant Physiol. 90 (1989) 1071-1076. [PMID: 16666853]
2. von Rad, U., Huttl, R., Lottspeich, F., Gierl, A. and Frey, M. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant J. 28 (2001) 633-642. [PMID: 11851909]
Accepted name: trans-zeatin O-β-D-glucosyltransferase
Reaction: UDP-glucose + trans-zeatin = UDP + O-β-D-glucosyl-trans-zeatin
Glossary:
zeatin
Other name(s): zeatin O-β-D-glucosyltransferase; uridine diphosphoglucose-zeatin O-glucosyltransferase; zeatin O-glucosyltransferase
Systematic name: UDP-glucose:trans-zeatin O-β-D-glucosyltransferase
Comments: Unlike EC 2.4.1.215, cis-zeatin O-β-D-glucosyltransferase, UDP-D-xylose can also act as donor (cf. EC 2.4.2.40, zeatin O-β-D-xylosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 123644-76-8
References:
1. Dixon, S.C., Martin, R.C., Mok, R.C., Shaw, G. and Mok, D.W.S. Zeatin glycosylation enzymes in Phaseolus - isolation of O-glucosyltransferase from Phaseolus lunatus and comparison to O-xylosyltransferase from P. vulgaris. Plant Physiol. 90 (1989) 1316-1321.
[EC 2.4.1.204 Transferred entry: now EC 2.4.2.40, zeatin O-β-D-xylosyltransferase (EC 2.4.1.204 created 1992, deleted 2003)]
Accepted name: galactogen 6β-galactosyltransferase
Reaction: UDP-galactose + galactogen = UDP + (1→6)-β-D-galactosylgalactogen
Other name(s): uridine diphosphogalactose-galactogen galactosyltransferase; 1,6-D-galactosyltransferase; β-(1-6)-D-galactosyltransferase
Systematic name: UDP-galactose:galactogen β-1,6-D-galactosyltransferase
Comments: Galactogen from Helix pomatia is the most effective acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 88273-54-5
References:
1. Goudsmit, E.M., Ketchum, P.A., Grossens, M.K. and Blake, D.A. Biosynthesis of galactogen: identification of a β-(1→6)-D-galactosyltransferase in Helix pomatia albumen glands. Biochim. Biophys. Acta 992 (1989) 289-297. [PMID: 2505854]
Accepted name: lactosylceramide 1,3-N-acetyl-β-D-glucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = UDP + N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
For diagram of reaction click here.
Glossary: GlcA = glucuronic acid
Other name(s): spHAS; seHAS; Alternating UDP-α-N-acetyl-D-glucosamine:β-D-glucuronosyl-(1→3)-[nascent hyaluronan] 4-N-acetyl-β-D-glucosaminyltransferase and UDP-α-D-glucuronate:N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan] 3-β-D-glucuronosyltransferase
Systematic name: Alternating UDP-N-acetyl-α-D-glucosamine:β-D-glucuronosyl-(1→3)-[nascent hyaluronan] 4-N-acetyl-β-D-glucosaminyltransferase and UDP-α-D-glucuronate:N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan] 3-β-D-glucuronosyltransferase (configuration-inverting)
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 83682-80-8
References:
1. Gottfries, J., Percy, A.K., Månsson, J.-E., Fredman, P., Wilkstrand, C.J., Friedman, H.S., Bigner, D.D. and Svennerholm, L. Glycolipids and glycosyltransferases in permanent cell lines established from human medulloblastomas. Biochim. Biophys. Acta 1081 (1991) 253-261. [PMID: 1825612]
2. Holmes, E.H., Hakomori, S. and Ostrander, G.K. Synthesis of type 1 and 2 lacto series glycolipid antigens in human colonic adenocarcinoma and derived cell lines is due to activation of a normally unexpressed β1--3N-acetylglucosaminyltransferase. J. Biol. Chem. 262 (1987) 15649-15658. [PMID: 2960671]
3. Percy, A.K., Gottfries, J., Vilbergsson, G., Månsson, J.E. and Svennerholm, J. Glycosphingolipid glycosyltransferases in human fetal brain. J. Neurochem. 56 (1991) 1461-1465. [PMID: 1901591]
Accepted name: xyloglucan:xyloglucosyl transferase
Reaction: breaks a β-(1→4) bond in the backbone of a xyloglucan and transfers the xyloglucanyl segment on to O-4 of the non-reducing terminal glucose residue of an acceptor, which can be a xyloglucan or an oligosaccharide of xyloglucan
Other name(s): endo-xyloglucan transferase; xyloglucan endotransglycosylase
Systematic name: xyloglucan:xyloglucan xyloglucanotransferase
Comments: does not use cello-oligosaccharides as either donor or acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 141588-40-1
References:
1. Fry, S.C., Smith, R.C., Renwick, K.F., Hodge, S.C., Matthews, K.J. Xyloglucan endotransglycosylase, a new cell wall-loosening activity from plants. Biochem. J. 282 (1992) 821-828. [PMID: 1554366]
2. Nishitani, K., Tominaga, R. Endoxyloglucan transferase, a novel class of glucosyltransferase that catalyzes transfer of a segment of xyloglucan to another xyloglucan molecule. J. Biol. Chem. 267 (1992) 21058-21064. [PMID: 1400418]
3. De Silva, J., Jarman, C.D., Arrowsmith, D.A., Stronach, M.S., Chengappa, S., Sidebottom, C., Reid, J.S.G. Molecular characterisation of a xyloglucan-specific endo-(1→4)-β-D-glucanase (xyloglucan endotransglucosylase) from nasturtium seeds. Plant J. 3 (1993) 701-711. [PMID: 8374619]
4. Lorences, E.P., Fry, S.C. Xyloglucan oligosaccharides with at least two α-D-xylose residues act as acceptor substrates for xyloglucan endotransglycosylase and promote the depolymerisation of xyloglucan. Plant Physiol. 88 (1993) 105-112.
Accepted name: diglucosyl diacylglycerol synthase (1,2-linking)
Reaction: UDP-α-D-glucose + 1,2-diacyl-3-O-(α-D-glucopyranosyl)-sn-glycerol = 1,2-diacyl-3-O-[α-D-glucopyranosyl-(1→2)-O-α-D-glucopyranosyl]-sn-glycerol + UDP
Other name(s): monoglucosyl diacylglycerol (1→2) glucosyltransferase; MGlcDAG (1→2) glucosyltransferase; DGlcDAG synthase (ambiguous); UDP-glucose:1,2-diacyl-3-O-(α-D-glucopyranosyl)-sn-glycerol (1→2) glucosyltransferase; diglucosyl diacylglycerol synthase
Systematic name: UDP-α-D-glucose:1,2-diacyl-3-O-(α-D-glucopyranosyl)-sn-glycerol 2-glucosyltransferase
Comments: The enzyme from Acholeplasma laidlawii requires Mg2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 168680-19-1
References:
1. Karlsson, O.P., Rytomaa, M., Dahlqvist, A., Kinnunen, P.K., Wieslander, A. Correlation between bilayer lipid dynamics and activity of the diglucosyldiacylglycerol synthase from Acholeplasma laidlawii membranes. Biochemistry 35 (1996) 10094-10102. [PMID: 8756472]
Accepted name: cis-p-coumarate glucosyltransferase
Reaction: UDP-glucose + cis-p-coumarate = 4'-O-β-D-glucosyl-cis-p-coumarate + UDP
Systematic name: UDP-glucose:cis-p-coumarate β-D-glucosyltransferase
Comments: cis-Caffeic acid also serves as a glucosyl acceptor with the enzyme from Sphagnum fallax kinggr. The corresponding trans-isomers are not substrates.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 196887-88-4
References:
1. Rasmussen, S. and Rudolph, H. Isolation, purification and characterization of UDP-glucose:cis-p-coumaric acid-β-D-glucosyltransferase from Sphagnum fallax. Phytochemistry 46 (1997) 449-453.
Accepted name: limonoid glucosyltransferase
Reaction: UDP-glucose + limonin = glucosyl-limonin + UDP
Other name(s): uridine diphosphoglucose-limonoid glucosyltransferase
Systematic name: UDP-glucose:limonin glucosyltransferase
Comments: The enzyme purified from navel orange albedo tissue also acts on the related tetranortriterpenoid nomilin.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 195836-82-9
References:
1. Shin, H., Suhayda, C.G., Hsu, W.-J. and Robertson, G.H. Purification of limonoid glucosyltransferase from navel orange albedo tissue. Phytochemistry 46 (1997) 33-37.
Accepted name: 1,3-β-galactosyl-N-acetylhexosamine phosphorylase
Reaction: β-D-galactopyranosyl-(1→3)-N-acetyl-D-glucosamine + phosphate = α-D-galactopyranose 1-phosphate + N-acetyl-D-glucosamine
Other name(s): lacto-N-biose phosphorylase; LNBP; galacto-N-biose phosphorylase
Systematic name: β-D-galactopyranosyl-(1→3)-N-acetyl-D-hexosamine:phosphate galactosyltransferase
Comments: Reaction also occurs with β-D-galactopyranosyl-(1→3)-N-acetyl-D-galactosamine as the substrate, giving N-acetyl-D-galactosamine as the product.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 224427-06-9
References:
1. Derensy-Dron, D., Krzewinski, F., Brassart, C. and Bouquelet S. β-1,3-Galactosyl-N-acetylhexosamine phosphorylase from Bifidobacterium bifidum DSM 20082: characterization, partial purification and relation to mucin degradation. Biotechnol. Appl. Biochem. 29 (1999) 3-10. [PMID: 9889079]
Accepted name: hyaluronan synthase
Reaction: (1) UDP-α-N-acetyl-D-glucosamine + β-D-glucuronosyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan] = UDP + N-acetyl-β-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan]
(2) UDP-α-D-glucuronate + N-acetyl-β-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→3)-[nascent hyaluronan] = UDP + β-D-glucuronosyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→3)-[nascent hyaluronan]
For diagram click here.
Glossary: GlcNAc = N-acetyl-D-glucosamine
GlcA = glucuronic acid
Other name(s): spHAS; seHAS
Systematic name: Alternating UDP-α-N-acetyl-D-glucosamine:β-D-glucuronosyl-(1→3)-[nascent hyaluronan] 4-N-acetyl-β-D-glucosaminyltransferase and UDP-α-D-glucuronate:N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan] 3-β-D-glucuronosyltransferase
Comments: The enzyme from Streptococcus Group A and Group C requires Mg2+. The enzyme adds GlcNAc to nascent hyaluronan when the non-reducing end is GlcA, but it adds GlcA when the non-reducing end is GlcNAc [3]. The enzyme is highly specific for UDP-GlcNAc and UDP-GlcA; no copolymerization is observed if either is replaced by UDP-Glc, UDP-Gal, UDP-GalNAc or UDP-GalA. Similar enzymes have been found in a variety of organisms.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 39346-43-5
References:
1. DeAngelis, P.L., Papaconstantinou, J. and Weigel, P.H. Molecular cloning, identification and sequence of the hyaluronan synthase gene from Group A Streptococcus pyogenes. J. Biol. Chem. 268 (1993) 19181-19184. [PMID: 8366070]
2. Jing, W. and DeAngelis, P.L. Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide. Glycobiology 10 (2000) 883-889. [PMID: 10988250]
3. DeAngelis, P.L. Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase. J. Biol. Chem. 274 (1999) 26557-26562. [PMID: 10473619]
4. Tlapak-Simmons, V.L., Baron, C.A. and Weigel, P.H. Characterization of the purified hyaluronan synthase from Streptococcus equisimilis. Biochemistry 43 (2004) 9234;9242. [PMID: 15248781]
Accepted name: glucosylglycerol-phosphate synthase
Reaction: ADP-α-D-glucose + sn-glycerol 3-phosphate = 2-(α-D-glucopyranosyl)-sn-glycerol 3-phosphate + ADP
Other name(s): ADP-glucose:sn-glycerol-3-phosphate 2-β-D-glucosyltransferase (incorrect)
Systematic name: ADP-α-D-glucose:sn-glycerol-3-phosphate 2-α-D-glucopyranosyltransferase
Comments: Acts with EC 3.1.3.69 (glucosylglycerol phosphatase) to form glucosylglycerol, an osmolyte that endows cyanobacteria with resistance to salt.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 161515-13-5
References:
1. Hagemann, M. and Erdmann, N. Activation and pathway of glucosylglycerol biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 140 (1994) 1427-1431.
2. Marin, K., Zuther, E., Kerstan, T., Kunert, A. and Hagemann, M. The ggpS gene from Synechocystis sp. strain PCC 6803 encoding glucosylglycerol-phosphate synthase is involved in osmolyte synthesis. J. Bacteriol. 180 (1998) 4843-4849. [PMID: 9733686]
Accepted name: glycoprotein 3-α-L-fucosyltransferase
Reaction: GDP-β-L-fucose + N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein] = GDP + N4-{β-D-GlcNAc-(1→2)-α-DMan-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-[α-L-Fuc-(1→3)]-β-D-GlcNAc}-L-asparaginyl-[protein]
For diagram click here.
Other name(s): GDP-L-Fuc:N-acetyl-β-D-glucosaminide α1,3-fucosyltransferase; GDP-L-Fuc:Asn-linked GlcNAc α1,3-fucosyltransferase; GDP-fucose:β-N-acetylglucosamine (Fuc to (Fucα1→6GlcNAc)-Asn-peptide) α1→3-fucosyltransferase; GDP-L-fucose:glycoprotein (L-fucose to asparagine-linked N-acetylglucosamine of 4-N-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 3-α-L-fucosyl-transferase; GDP-L-fucose:glycoprotein (L-fucose to asparagine-linked N-acetylglucosamine of N4-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 3-α-L-fucosyl-transferase
Systematic name: GDP-β-L-fucose:N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein] 3-α-L-fucosyltransferase (configuration-retaining)
Comments: Requires Mn2+. The enzyme transfers to N-linked oligosaccharide structures (N-glycans), generally with a specificity for N-glycans with one unsubstituted non-reducing terminal GlcNAc residue. This enzyme catalyses a reaction similar to that of EC 2.4.1.68, glycoprotein 6-α-L-fucosyltransferase, but transferring the L-fucosyl group from GDP-β-L-fucose to form an α1,3-linkage rather than an α1,6-linkage. The N-glycan products of this enzyme are present in plants, insects and some other invertebrates (e.g., Schistosoma, Haemonchus, Lymnaea).
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 68247-53-0
References:
1. Wilson, I.B.H., Rendic, D., Freilinger, A., Dumic, J., Altmann, F., Mucha, J., Müller, S. and Hauser, M.-T. Cloning and expression of α1,3-fucosyltransferase homologues from Arabidopsis thaliana. Biochim. Biophys. Acta 1527 (2001) 88-96. [PMID: 11420147]
2. Fabini, G., Freilinger, A., Altmann, F. and Wilson, I.B.H. Identification of core α1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from Drosophila melanogaster. Potential basis of the neural anti-horseradish peroxidase epitope. J. Biol. Chem. 276 (2001) 28058-28067. [PMID: 11382750]
3. Leiter, H., Mucha, J., Staudacher, E., Grimm, R., Glössl, J. and Altmann, F. Purification, cDNA cloning, and expression of GDP-L-Fuc:Asn-linked GlcNAc α1,3-fucosyltransferase from mung beans. J. Biol. Chem. 274 (1999) 21830-21839. [PMID: 10419500]
4. van Tetering, A., Schiphorst, W.E.C.M., van den Eijnden, D.H. and van Die, I. Characterization of core α1→3-fucosyltransferase from the snail Lymnaea stagnalis that is involved in the synthesis of complex type N-glycans. FEBS Lett. 461 (1999) 311-314. [PMID: 10567717]
5. Staudacher, E., Altmann, F., Glössl, J., März, L., Schachter, H., Kamerling, J.P., Hård, K. and Vliegenthart, J.F.G. GDP-fucose:β-N-acetylglucosamine (Fuc to (Fucα1→6GlcNAc)-Asn-peptide) α1→3-fucosyltransferase activity in honeybee (Apis mellifica) venom glands. The difucosylation of asparagine-bound N-acetylglucosamine. Eur. J. Biochem. 199 (1991) 745-751. [PMID: 1868856]
Accepted name: cis-zeatin O-β-D-glucosyltransferase
Reaction: UDP-glucose + cis-zeatin = UDP + O-β-D-glucosyl-cis-zeatin
Glossary:
zeatin
Systematic name: UDP-glucose:cis-zeatin O-β-D-glucosyltransferase
Comments: The enzyme from maize can use cis-zeatin and UDP-glucose as substrates, but not cis-ribosylzeatin, trans-zeatin or trans-ribosylzeatin. Unlike EC 2.4.1.203, trans-zeatin O-β-D-glucosyltransferase, UDP-D-xylose cannot act as a donor.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 123644-76-8
References:
1. Martin, R.C., Mok, M.C., Habben, J.E. and Mok, D.W.S. A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc. Natl. Acad. Sci. USA 98 (2001) 5922-5926. [PMID: 11331778]
Accepted name: trehalose 6-phosphate phosphorylase
Reaction: α,α-trehalose 6-phosphate + phosphate = glucose 6-phosphate + β-D-glucose 1-phosphate
Systematic name: α,α-trehalose 6-phosphate:phosphate β-D-glucosyltransferase
Comments: The enzyme from Lactococcus lactis is specific for trehalose 6-phosphate. Differs from EC 2.4.1.64, α,α-trehalose phosphorylase, in that trehalose is not a substrate.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 403512-51-6
References:
1. Andersson, U., Levander, F. and Radstrom, P. Trehalose 6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis. J. Biol. Chem. 276 (2001) 42707-42713. [PMID: 11553642]
Accepted name: mannosyl-3-phosphoglycerate synthase
Reaction: GDP-mannose + 3-phospho-D-glycerate = GDP + 2-(α-D-mannosyl)-3-phosphoglycerate
Other name(s): MPG synthase; GDP-mannose:3-phosphoglycerate 3-α-D-mannosyltransferase
Systematic name: GDP-mannose:3-phospho-D-glycerate 3-α-D-mannosyltransferase
Comments: Requires Mg2+. The enzyme is absolutely specific for GDPmannose and 3-phosphoglycerate, and transfers the mannosyl group with retention of configuration. In the hyperthermophilic archaeon Pyrococcus horikoshii, the mannosyl-3-phosphoglycerate formed is subsequently dephosphorylated by a specific phosphatase, EC 3.1.3.70 (mannosyl-3-phosphoglycerate phosphatase), producing mannosylglycerate.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 393512-63-5
References:
1. Empadinhas, N., Marugg, J.D., Borges, N., Santos, H. and da Costa, M.S. Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemical and genetic characterization of key-enzymes. J. Biol. Chem. 276 (2001) 43580-43588. [PMID: 11562374]
Accepted name: hydroquinone glucosyltransferase
Reaction: UDP-glucose + hydroquinone = UDP + hydroquinone-O-β-D-glucopyranoside
Other name(s): arbutin synthase; hydroquinone:O-glucosyltransferase
Systematic name: UDP-glucose:hydroquinone-O-β-D-glucosyltransferase
Comments: Hydroquinone is the most effective acceptor, but over 40 phenolic compounds are also glucosylated, but at lower rates.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number:
References:
1. Arend, J., Warzecha, H. and Stöckigt, J. Hydroquinone:O-glucosyltransferase from cultivated Rauvolfia cells: enrichment and partial amino acid sequences. Phytochemistry 53 (2000) 187-193. [PMID: 10680170]
2. Arend, J., Warzecha, H., Hefner, T. and Stöckigt, J. Utilizing genetically engineered bacteria to produce plant specific glucosides. Biotechnol. Bioeng. 76 (2001) 126-131. [PMID: 11505382]
Accepted name: vomilenine glucosyltransferase
Reaction: UDP-glucose + vomilenine = UDP + raucaffricine
For diagram click here.
Other name(s): UDPG:vomilenine 21-β-D-glucosyltransferase
Systematic name: UDP-glucose:vomilenine 21-O-β-D-glucosyltransferase
Comments: The indole alkaloid raucaffricine accumulates during the culture of Rauvolfia cell suspensions.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number:
References:
1. Warzecha, H., Obitz, P. and Stöckigt, J. Purification, partial amino acid sequence and structure of the product of raucaffricine-O-β-D-glucosidase from plant cell cultures of Rauwolfia serpentina. Phytochemistry 50 (1999) 1099-1109. [PMID: 10234858]
2. Warzecha, H., Gerasimenko, I., Kutchan, T.M. and Stöckigt, J. Molecular cloning and functional bacterial expression of a plant glucosidase specifically involved in alkaloid biosynthesis. Phytochemistry 54 (2000) 657-666. [PMID: 10975500]
3. Ruyter, C.M., and Stöckigt, J. Enzymatic formation of raucaffricine, the major indole alkaloid of Rauwolfia serpentina cell-suspension cultures. Helv. Chim. Acta 74 (1991) 1707-1712.
Accepted name: indoxyl-UDPG glucosyltransferase
Reaction: UDP-glucose + indoxyl = UDP + indican
Glossary: indoxyl = indole-3-ol
Other name(s): indoxyl-UDPG-glucosyltransferase
Systematic name: UDP-glucose:indoxyl 3-O-β-D-glucosyltransferase
Comments: Also acts to a limited extent on 4-, 5-, 6- and 7-hydroxyindole. After enzymic or chemical hydrolysis, indican forms indoxyl, which, in turn, is converted in the presence of oxygen to the dye indigo.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 258339-72-9
References:
1. Marcinek, H., Weyler, W., Deus-Neumann, B. and Zenk, M.H. Indoxyl-UDPG-glucosyltransferase from Baphicacanthus cusia. Phytochemistry 53 (2000) 201-207. [PMID: 10680172]
Accepted name: peptide-O-fucosyltransferase
Reaction: GDP-β-L-fucose + [protein]-(L-serine/L-threonine) = GDP + [protein]-3-O-(α-L-fucosyl)-(L-serine/L-threonine)
Other name(s): GDP-L-fucose:polypeptide fucosyltransferase; GDP-fucose protein O-fucosyltransferase; GDP-fucose:polypeptide fucosyltransferase; POFUT1 (gene name); POFUT2 (gene name)
Systematic name: GDP-β-L-fucose:protein-(L-serine/L-threonine) O-α-L-fucosyltransferase (configuration-inverting)
Comments: The enzyme, found in animals and plants, is involved in the biosynthesis of O-fucosylated proteins. In EGF domains, the attachment of O-linked fucose to serine or threonine occurs within the sequence Cys-Xaa-Xaa-Gly-Gly-Ser/Thr-Cys.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9033-08-3
References:
1. Wang, Y. and Spellman, M.W. Purification and characterization of a GDP-fucose:polypeptide fucosyltransferase from Chinese hamster ovary cells. J. Biol. Chem. 273 (1998) 8112-8118. [PMID: 9525914]
2. Wang, Y., Shao, L., Shi, S., Harris, R.J., Spellman, M.W., Stanley, P. and Haltiwanger, R.S. Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase. J. Biol. Chem. 276 (2001) 40338-40345. [PMID: 11524432]
3. Wang, Y., Lee, G.F., Kelley, R.F. and Spellman, M.W. Identification of a GDP-L-fucose:polypeptide fucosyltransferase and enzymatic addition of O-linked fucose to EGF domains. Glycobiology 6 (1996) 837-842. [PMID: 9023546]
4. Hofsteenge, J., Huwiler, K.G., Macek, B., Hess, D., Lawler, J., Mosher, D.F. and Peter-Katalinic, J. C-Mannosylation and O-fucosylation of the thrombospondin type 1 module. J. Biol. Chem. 276 (2001) 6485-6498. [PMID: 11067851]
5. Valero-Gonzalez, J., Leonhard-Melief, C., Lira-Navarrete, E., Jimenez-Oses, G., Hernandez-Ruiz, C., Pallares, M.C., Yruela, I., Vasudevan, D., Lostao, A., Corzana, F., Takeuchi, H., Haltiwanger, R.S. and Hurtado-Guerrero, R. A proactive role of water molecules in acceptor recognition by protein O-fucosyltransferase 2. Nat. Chem. Biol. 12 (2016) 240-246. [PMID: 26854667]
6. Zentella, R., Sui, N., Barnhill, B., Hsieh, W.P., Hu, J., Shabanowitz, J., Boyce, M., Olszewski, N.E., Zhou, P., Hunt, D.F. and Sun, T.P. The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA. Nat. Chem. Biol. 13 (2017) 479-485. [PMID: 28244988]
7. Lopaticki, S., Yang, A.SP., John, A., Scott, N.E., Lingford, J.P., O'Neill, M.T., Erickson, S.M., McKenzie, N.C., Jennison, C., Whitehead, L.W., Douglas, D.N., Kneteman, N.M., Goddard-Borger, E.D. and Boddey, J.A. Protein O-fucosylation in Plasmodium falciparum ensures efficient infection of mosquito and vertebrate hosts. Nat. Commun. 8 (2017) 561. [PMID: 28916755]
Accepted name: O-fucosylpeptide 3-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + [protein with EGF-like domain]-3-O-(α-L-fucosyl)-(L-serine/L-threonine) = UDP + [protein with EGF-like domain]-3-O-[N-acetyl-β-D-glucosaminyl-(1→3)-α-L-fucosyl]-(L-serine/L-threonine)
Glossary: EGF = epidermal growth factor
EGF-like domain = an evolutionary conserved domain containing 30 to 40 amino-acid residues first described from epidermal growth factor
Other name(s): O-fucosylpeptide β-1,3-N-acetylglucosaminyltransferase; fringe; UDP-D-GlcNAc:O-L-fucosylpeptide 3-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:[protein with EGF-like domain]-3-O-(α-L-fucosyl)-(L-serine/L-threonine) 3-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme, found in animals and plants, is involved in the biosynthesis of the tetrasaccharides α-Neu5Ac-(2→3)-β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-α-L-Fuc and α-Neu5Ac-(2→6)-β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-α-L-Fuc, which are attached to L-Ser or L-Thr residues within the sequence Cys-Xaa-Xaa-Gly-Gly-Ser/Thr-Cys in EGF-like domains in Notch and Factor-X proteins, respectively. The substrate is provided by EC 2.4.1.221, peptide-O-fucosyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 299203-70-6
References:
1. Moloney, D.J., Panin, V.M., Johnston, S.H., Chen, J., Shao, L., Wilson, R., Wang, Y., Stanley, P., Irvine, K.D., Haltiwanger, R.S. and Vogt, T.F. Fringe is a glycosyltransferase that modifies Notch. Nature 406 (2000) 369-375. [PMID: 10935626]
2. Bruckner, K., Perez, L., Clausen, H. and Cohen, S. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 406 (2000) 411-415. [PMID: 10935637]
3. Rampal, R., Li, A.S., Moloney, D.J., Georgiou, S.A., Luther, K.B., Nita-Lazar, A. and Haltiwanger, R.S. Lunatic fringe, manic fringe, and radical fringe recognize similar specificity determinants in O-fucosylated epidermal growth factor-like repeats. J. Biol. Chem. 280 (2005) 42454-42463. [PMID: 16221665]
Accepted name: glucuronosyl-galactosyl-proteoglycan 4-α-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(α-D-GlcNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
For diagram of reaction click here.
Glossary: [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = [protein]-3-O-(β-D-glucuronosyl-(1→3)-β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
Other name(s): α-N-acetylglucosaminyltransferase I; α1,4-N-acetylglucosaminyltransferase; glucuronosylgalactosyl-proteoglycan 4-α-N-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:β-D-glucuronosyl-(1→3)-β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl-proteoglycan 4IV-α-N-acetyl-D-glucosaminyltransferase; glucuronyl-galactosyl-proteoglycan 4-α-N-acetylglucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:[protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine 4IV-α-N-acetyl-D-glucosaminyltransferase (configuration-retaining)
Comments: Enzyme involved in the initiation of heparin and heparan sulfate synthesis, transferring GlcNAc to the (GlcA-Gal-Gal-Xyl-)Ser core. Apparently products of both the human EXTL2 and EXTL3 genes can catalyse this reaction. In Caenorhabditis elegans, the product of the rib-2 gene displays this activity as well as that of EC 2.4.1.224, glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-α-N-acetylglucosaminyltransferase. For explanation of the use of a superscript in the systematic name, see 2-Carb-37.2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 179241-74-8
References:
1. Kitagawa, H., Shimakawa, H. and Sugahara, K. The tumor suppressor EXT-like gene EXTL2 encodes an α1,4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate. J. Biol. Chem. 274 (1999) 13933-13937. [PMID: 10318803]
2. Kitagawa, H., Egusa, N., Tamura, J.I., Kusche-Gullberg, M., Lindahl, U. and Sugahara, K. rib-2, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes encodes a novel α1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. J. Biol. Chem. 276 (2001) 4834-4838. [PMID: 11121397]
Accepted name: glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-α-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-D-glucosamine + β-D-glucuronosyl-(1→4)-N-acetyl-α-D-glucosaminyl-proteoglycan = UDP + N-acetyl-α-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→4)-N-acetyl-α-D-glucosaminyl-proteoglycan
For diagram click here.
Other name(s): α-N-acetylglucosaminyltransferase II glucuronyl-N-acetylglucosaminylproteoglycan α-1,4-N-acetylglucosaminyltransferase
Systematic name: UDP-N-acetyl-D-glucosamine:β-D-glucuronosyl-(1→4)-N-acetyl-α-D-glucosaminyl-proteoglycan 4-α-N-acetylglucosaminyltransferase
Comments: Involved in the biosynthesis of heparin and heparan sulfate. Some forms of the enzyme from human (particularly the enzyme complex encoded by the EXT1 and EXT2 genes) act as bifunctional glycosyltransferases, which also have the 4-β-glucuronosyltransferase (EC 2.4.1.225, N-acetylglucosaminyl-proteoglycan 4-β-glucuronosyltransferase) activity required for the synthesis of the heparan sulfate disaccharide repeats. Other human forms of this enzyme (e.g. the product of the EXTL1 gene) have only the 4-α-N-acetylglucosaminyltransferase activity. In Caenorhabditis elegans, the product of the rib-2 gene displays the activities of this enzyme as well as EC 2.4.1.223, glucuronyl-galactosyl-proteoglycan 4-α-N-acetylglucosaminyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 336193-98-7
References:
1. Kim, B.T., Kitagawa, H., Tamura, J., Saito, T., Kusche-Gullberg, M., Lindahl, U. and Sugahara, K. Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode α1,4-N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/heparin biosynthesis. Proc. Natl. Acad. Sci. USA 98 (2001) 7176-7181. [PMID: 11390981]
2. Kitagawa, H., Egusa, N., Tamura, J.I., Kusche-Gullberg, M., Lindahl, U. and Sugahara, K. rib-2, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes encodes a novel α1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. J. Biol. Chem. 276 (2001) 4834-4838. [PMID: 11121397]
3. Senay, C., Lind, T., Muguruma, K., Tone, Y., Kitagawa, H., Sugahara, K., Lidholt, K., Lindahl, U. and Kusche-Gullberg, M. The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep. 1 (2000) 282-286. [PMID: 11256613]
4. Lind, T., Tufaro, F., McCormick, C., Lindahl, U. and Lidholt, K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J. Biol. Chem. 273 (1998) 26265-26268. [PMID: 9756849]
Accepted name: N-acetylglucosaminyl-proteoglycan 4-β-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + N-acetyl-α-D-glucosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan = UDP + β-D-glucuronosyl-(1→4)-N-acetyl-α-D-glucosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan
For diagram click here.
Other name(s): N-acetylglucosaminylproteoglycan β-1,4-glucuronyltransferase; heparan glucuronyltransferase II
Systematic name: UDP-α-D-glucuronate:N-acetyl-α-D-glucosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan 4-β-glucuronosyltransferase
Comments: Involved in the biosynthesis of heparin and heparan sulfate. Some forms of the human enzyme (particularly the enzyme complex encoded by the EXT1 and EXT2 genes) act as bifunctional glycosyltransferases, which also have the glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-α-N-acetylglucosaminyltransferase (EC 2.4.1.224) activity required for the synthesis of the heparan sulfate disaccharide repeats.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 145539-84-0
References:
1. Senay, C., Lind, T., Muguruma, K., Tone, Y., Kitagawa, H., Sugahara, K., Lidholt, K., Lindahl, U. and Kusche-Gullberg, M. The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep. 1 (2000) 282-286. [PMID: 11256613]
2. Lind, T., Tufaro, F., McCormick, C., Lindahl, U. and Lidholt, K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J. Biol. Chem. 273 (1998) 26265-26268. [PMID: 9756849]
Accepted name: N-acetylgalactosaminyl-proteoglycan 3-β-glucuronosyltransferase
Reaction: (1) UDP-α-D-glucuronate + [protein]-3-O-(β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
(2) UDP-α-D-glucuronate + [protein]-3-O-([β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]n-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-[β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]n-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
For diagram of reaction click here.
Other name(s): chondroitin glucuronyltransferase II; α-D-glucuronate:N-acetyl-β-D-galactosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan 3-β-glucuronosyltransferase; UDP-α-D-glucuronate:N-acetyl-β-D-galactosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan 3-β-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:[protein]-3-O-(β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine 3-β-glucuronosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of chondroitin and dermatan sulfate. The human chondroitin synthetase is a bifunctional glycosyltransferase, which has the 3-β-glucuronosyltransferase and 4-β-N-acetylgalactosaminyltransferase (EC 2.4.1.175) activities required for the synthesis of the chondroitin sulfate disaccharide repeats. Similar chondroitin synthase ’co-polymerases’ can be found in Pasteurella multocida and Escherichia coli. There is also another human protein with apparently only the 3-β-glucuronosyltransferase activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 269077-98-7
References:
1. Kitagawa, H., Uyama, T. and Sugahara, K. Molecular cloning and expression of a human chondroitin synthase. J. Biol. Chem. 276 (2001) 38721-38726. [PMID: 11514575]
2. DeAngelis, P.L. and Padgett-McCue, A.J. Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J. Biol. Chem. 275 (2000) 24124-24129. [PMID: 10818104]
3. Ninomiya, T., Sugiura, N., Tawada, A., Sugimoto, K., Watanabe, H. and Kimata, K. Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J. Biol. Chem. 277 (2002) 21567-21575. [PMID: 11943778]
4. Gotoh, M., Yada, T., Sato, T., Akashima, T., Iwasaki, H., Mochizuki, H., Inaba, N., Togayachi, A., Kudo, T., Watanabe, H., Kimata, K. and Narimatsu, H. Molecular cloning and characterization of a novel chondroitin sulfate glucuronyltransferase which transfers glucuronic acid to N-acetylgalactosamine. J. Biol. Chem. 277 (2002) 38179-38188. [PMID: 12145278]
Accepted name: undecaprenyldiphospho-muramoylpentapeptide β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol = UDP + β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
For diagram of reaction click here.
Other name(s): MurG transferase; UDP-N-D-glucosamine:N-acetyl-α-D-muramyl(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol β-1,4-N-acetylglucosaminlytransferase; UDP-N-acetyl-D-glucosamine:N-acetyl-α-D-muramyl(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol 4-β-N-acetylglucosaminlytransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-α-D-muramyl(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol 4-β-N-acetylglucosaminlytransferase (configuration-inverting)
Comments: The enzyme also works when the lysine residue is replaced by meso-2,6-diaminoheptanedioate (meso-2,6-diaminopimelate, A2pm) combined with adjacent residues through its L-centre, as it is in Gram-negative and some Gram-positive organisms. The undecaprenol involved is ditrans,octacis-undecaprenol (for definitions, click here).
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 60976-26-3
References:
1. van Heijenoort, J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18 (2001) 503-519. [PMID: 11699883]
Accepted name: lactosylceramide 4-α-galactosyltransferase
Reaction: UDP-α-D-galactose + β-D-galactosyl-(1→4)-D-glucosyl-(1↔1)-ceramide = UDP + α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-D-glucosyl-(1↔1)-ceramide
For diagram of reaction click here.
Glossary: lactosylceramide = β-D-galactosyl-(1→4)-D-glucosyl-(1↔1)-ceramide
Other name(s): Galβ1-4Glcβ1-Cer α1,4-galactosyltransferase; globotriaosylceramide/CD77 synthase; histo-blood group Pk UDP-galactose; UDP-galactose:lactosylceramide 4II-α-D-galactosyltransferase; UDP-galactose:β-D-galactosyl-(1→4)-D-glucosyl(1↔1)ceramide 4II-α-D-galactosyltransferase; UDP-galactose:β-D-galactosyl-(1→4)-D-glucosyl-(1↔1)-ceramide 4II-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:β-D-galactosyl-(1→4)-D-glucosyl-(1↔1)-ceramide 4II-α-D-galactosyltransferase
Comments: For explanation of superscript II in systematic name, see 2-carb.37.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 52725-57-2
References:
1. Bailly, P., Piller, F., Cartron, J.P., Leroy, Y. and Fournet, B. Identification of UDP-galactose: lactose (lactosylceramide) α-4 and β-3 galactosyltransferases in human kidney. Biochem. Biophys. Res. Commun. 141 (1986) 84-91. [PMID: 3099784]
2. Steffensen, R., Carlier, K., Wiels, J., Levery, S.B., Stroud, M., Cedergren, B., Nilsson Sojka, B., Bennett, E.P., Jersild, C. and Clausen, H. Cloning and expression of the histo-blood group Pk UDP-galactose: Galβ1-4Glcβ1-Cer α1,4-galactosyltransferase. Molecular genetic basis of the p phenotype. J. Biol. Chem. 275 (2000) 16723-16729. [PMID: 10747952]
3. Kojima, Y., Fukumoto, S., Furukawa, K., Okajima, T., Wiels, J., Yokoyama, K., Suzuki, Y., Urano, T., Ohta, M. and Furukawa, K. Molecular cloning of globotriaosylceramide/CD77 synthase, a glycosyltransferase that initiates the synthesis of globo series glycosphingolipids. J. Biol. Chem. 275 (2000) 15152-15156. [PMID: 10748143]
Accepted name: [Skp1-protein]-hydroxyproline N-acetylglucosaminyltransferase
Reaction: UDP-N-acetylglucosamine + [Skp1-protein]-trans-4-hydroxy-L-proline = UDP + [Skp1-protein]-O-(N-acetyl-D-glucosaminyl)-trans-4-hydroxy-L-proline
Other name(s): Skp1-HyPro GlcNAc-transferase; UDP-N-acetylglucosamine (GlcNAc):hydroxyproline polypeptide GlcNAc-transferase; UDP-GlcNAc:Skp1-hydroxyproline GlcNAc-transferase; UDP-GlcNAc:hydroxyproline polypeptide GlcNAc-transferase; UDP-N-acetyl-D-glucosamine:[Skp1-protein]-hydroxyproline N-acetyl-D-glucosaminyl-transferase
Systematic name: UDP-N-acetyl-D-glucosamine:[Skp1-protein]-trans-4-hydroxy-L-proline N-acetyl-D-glucosaminyl-transferase
Comments: Skp1 is a cytoplasmic and nuclear protein required for the ubiquitination of cell cycle regulatory proteins and transcriptional factors. In Dictyostelium Skp1 is modified by the linear pentasaccharide Galα1-6Galα1-L-Fucα1-2Galβ1-3GlcNAc, which is attached to a hydroxyproline residue at position 143. This enzyme catalyses the first step in the building up of the pentasaccharide by attaching an N-acetylglucosaminyl group to the hydroxyproline residue. It requires dithiothreitol and a divalent cation for activity.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 256531-81-4
References:
1. van der Wel, H., Morris, H.R., Panico, M., Paxton, T., Dell, A., Kaplan, L. and West, C.M. Molecular cloning and expression of a UDP-N-acetylglucosamine (GlcNAc):hydroxyproline polypeptide GlcNAc-transferase that modifies Skp1 in the cytoplasm of Dictyostelium. J. Biol. Chem. 277 (2002) 46328-46337. [PMID: 12244115]
2. Teng-umnuay, P., van der Wel, H. and West, C.M. Identification of a UDP-GlcNAc:Skp1-hydroxyproline GlcNAc-transferase in the cytoplasm of Dictyostelium. J. Biol. Chem. 274 (1999) 36392-36402. [PMID: 10593934]
3. West, C.M., van der Wel, H. and Gaucher, E.A. Complex glycosylation of Skp1 in Dictyostelium: implications for the modification of other eukaryotic cytoplasmic and nuclear proteins. Glycobiology 12 (2002) 17. [PMID: 11886837]
Accepted name: kojibiose phosphorylase
Reaction: 2-α-D-glucosyl-D-glucose + phosphate = D-glucose + β-D-glucose 1-phosphate
For diagram click here.
Systematic name: 2-α-D-glucosyl-D-glucose:phosphate β-D-glucosyltransferase
Comments: The enzyme from Thermoanaerobacter brockii can act with α-1,2-oligoglucans, such as selaginose, as substrate, but more slowly. The enzyme is inactive when dissaccharides with linkages other than α-1,2 linkages, such as sophorose, trehalose, neotrehalose, nigerose, laminaribiose, maltose, cellobiose, isomaltose, gentiobiose, sucrose and lactose, are used as substrates.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 206566-36-1
References:
1. Chaen, H., Yamamoto, T., Nishimoto, T., Nakada, T., Fukuda, S., Sugimoto, T., Kurimoto, M. and Tsujisaka, Y. Purification and characterization of a novel phosphorylase, kojibiose phosphorylase, from Thermoanaerobium brockii. J. Appl. Glycosci. 46 (1999) 423-429.
2. Chaen, H., Nishimoto, T., Nakada, T., Fukuda, S., Kurimoto, M. and Tsujisaka, Y. Enzymatic synthesis of kojioligosaccharides using kojibiose phosphorylase. J. Biosci. Bioeng. 92 (2001) 177-182.
Accepted name: α,α-trehalose phosphorylase (configuration-retaining)
Reaction: α,α-trehalose + phosphate = α-D-glucose + α-D-glucose 1-phosphate
For diagram of reaction click here
Other name(s): trehalose phosphorylase[ambiguous]
Systematic name: α,α-trehalose:phosphate α-D-glucosyltransferase
Comments: Unlike EC 2.4.1.64, α,α-trehalose phosphorylase, this enzyme retains its anomeric configuration. Vanadate is a strong competitive inhibitor of this reversible reaction.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number:
References:
1. Eis, C. and Nidetzky, B. Substrate-binding recognition and specificity of trehalose phosphorylase from Schizophyllum commune examined in steady-state kinetic studies with deoxy and deoxyfluoro substrate analogues and inhibitors. Biochem. J. 363 (2002) 335-340. [PMID: 11931662]
2. Eis, C., Watkins, M., Prohaska, T. and Nidetzky, B. Fungal trehalose phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune. Biochem. J. 356 (2001) 757-767. [PMID: 11389683]
3. Nidetzky, B. and Eis, C. α-Retaining glucosyl transfer catalysed by trehalose phosphorylase from Schizophyllum commune: mechanistic evidence obtained from steady-state kinetic studies with substrate analogues and inhibitors. Biochem. J. 360 (2001) 727-736. [PMID: 11736665]
Accepted name: initiation-specific α-1,6-mannosyltransferase
Reaction: Transfers an α-D-mannosyl residue from GDP-mannose into lipid-linked oligosaccharide, forming an α-(1→6)-D-mannosyl-D-mannose linkage
Other name(s): α-1,6-mannosyltransferase; GDP-mannose:oligosaccharide 1,6-α-D-mannosyltransferase; GDP-mannose:glycolipid 1,6-α-D-mannosyltransferase; glycolipid 6-α-mannosyltransferase
Systematic name: GDP-mannose:oligosaccharide 1,6-α-D-mannosyltransferase
Comments: Requires Mn2+. In Saccharomyces cerevisiae, this enzyme catalyses an essential step in the outer chain elongation of N-linked oligosaccharides. Man8GlcNAc and Man9GlcNAc are equally good substrates.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 346003-17-6
References:
1. Romero, P.A. and Herscovics, A. Glycoprotein biosynthesis in Saccharomyces cerevisiae. Characterization of α-1,6-mannosyltransferase which initiates outer chain formation. J. Biol. Chem. 264 (1989) 1946-1950. [PMID: 2644248]
2. Reason, A.J., Dell, A., Romero, P.A. and Herscovics, A. Specificity of the mannosyltransferase which initiates outer chain formation in Saccharomyces cerevisiae. Glycobiology 1 (1991) 387-391. [PMID: 1820199]
3. Nakanishi-Shindo, Y., Nakayama, K., Tanaka, A., Toda, Y. and Jigami, Y. Structure of the N-linked oligosaccharides that show the complete loss of α-1,6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J. Biol. Chem. 268 (1993) 26338-26345. [PMID: 8253757]
4. Yamamoto, K., Okamoto, M., Yoko-o, T. and Jigami, Y. Salt stress induces the expression of the Schizosaccharomyces pombe och1+, which encodes an initiation-specific α-1,6-mannosyltransferase for N-linked outer chain synthesis of cell wall mannoproteins. Biosci. Biotechnol. Biochem. 67 (2003) 927-929. [PMID: 12784644]
5. Cui, Z., Horecka, J. and Jigami, Y. Cdc4 is involved in the transcriptional control of OCH1, a gene encoding α-1,6-mannosyltransferase in Saccharomyces cerevisiae. Yeast 19 (2002) 69-77. [PMID: 11754484]
6. Tsukahara, K., Watanabe, T., Yoko-o, T. and Chigami, Y. Schizosaccharomyces pombe och1+ gene encoding α-1,6-mannosyltransferase and use of och1+ gene knockout fission yeast for production of glycoproteins with reduced glycosylation. Jpn. Kokai Tokkyo Koho (2001) 11 pp.
7. Nakayama, K., Nakanishi-Shindo, Y., Tanaka, A., Haga-Toda, Y. and Jigami, Y. Substrate specificity of α-1,6-mannosyltransferase that initiates N-linked mannose outer chain elongation in Saccharomyces cerevisiae. FEBS Lett. 412 (1997) 547-550. [PMID: 9276464]
8. Suzuki, A., Shibata, N., Suzuki, M., Saitoh, F., Takata, Y., Oshie, A., Oyamada, H., Kobayashi, H., Suzuki, S. and Okawa, Y. Characterization of α-1,6-mannosyltransferase responsible for the synthesis of branched side chains in Candida albicans mannan. Eur. J. Biochem. 240 (1996) 37-44. [PMID: 8797833]
9. Yip, C.L., Welch, S.K., Klebl, F., Gilbert, T., Seidel, P., Grant, F., O'Hara, P.J. and MacKay, V.L. Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins. Proc. Natl. Acad. Sci. USA 91 (1994) 2723-2727. [PMID: 8146181]
[EC 2.4.1.233 Deleted entry: anthocyanidin 3-O-glucosyltransferase. The enzyme is identical to EC 2.4.1.115, anthocyanidin 3-O-glucosyltransferase (EC 2.4.1.233 created 2004, deleted 2005)]
Accepted name: kaempferol 3-O-galactosyltransferase
Reaction: UDP-α-D-galactose + kaempferol = UDP + kaempferol 3-O-β-D-galactoside
For diagram click here.
Other name(s): F3GalTase; UDP-galactose:kaempferol 3-O-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:kaempferol 3-O-β-D-galactosyltransferase
Comments: Acts on the endogenous flavonols kaempferol and quercetin, to a lesser extent on myricetin and fisetin, and weakly on galangin and isorhamnetin. The reaction can occur equally well in both directions.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number:
References:
1. Miller, K.D., Guyon, V., Evans, J.N., Shuttleworth, W.A. and Taylor, L.P. Purification, cloning, and heterologous expression of a catalytically efficient flavonol 3-O-galactosyltransferase expressed in the male gametophyte of Petunia hybrida. J. Biol. Chem. 274 (1999) 34011-34019. [PMID: 10567367]
[EC 2.4.1.235 Deleted entry: Enzyme is identical to EC 2.4.1.116, cyanidin 3-O-rutinoside 5-O-glucosyltransferase (EC 2.4.1.235 created 2004, deleted 2006)]
Accepted name: flavanone 7-O-glucoside 2''-O-β-L-rhamnosyltransferase
Reaction: UDP-β-L-rhamnose + a flavanone 7-O-β-D-glucoside = UDP + a flavanone 7-O-[α-L-rhamnosyl-(1→2)-β-D-glucoside]
See diagram for reaction with 7-O--glucosides of naringenin or apigenin or luteolin.
Glossary: UDP-β-L-rhamnose = UDP-6-deoxy-β-L-mannose
Other name(s): UDP-rhamnose:flavanone-7-O-glucoside-2''-O-rhamnosyltransferase; 1→2 UDP-rhamnosyltransferase; UDP-L-rhamnose:flavanone-7-O-glucoside 2''-O-β-L-rhamnosyltransferase
Systematic name: UDP-β-L-rhamnose:flavanone-7-O-glucoside 2''-O-α-L-rhamnosyltransferase
Comments: Acts on the 7-O-glucoside of naringenin and hesperetin, also the flavone 7-O-glucosides of luteolin and apigenin.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 125752-89-8
References:
1. Bar-Peled, M., Lewinsohn, E., Fluhr, R. and Gressel, J. UDP-rhamnose:flavanone-7-O-glucoside-2"-O-rhamnosyltransferase. Purification and characterization of an enzyme catalyzing the production of bitter compounds in citrus. J. Biol. Chem. 266 (1991) 20953-20959. [PMID: 1939145]
Accepted name: flavonol 7-O-β-glucosyltransferase
Reaction: UDP-glucose + a flavonol = UDP + a flavonol 7-O-β-D-glucoside
For diagram click here.
Other name(s): UDP-glucose:flavonol 7-O-glucosyltransferase
Systematic name: UDP-glucose:flavonol 7-O-β-D-glucosyltransferase
Comments: Acts on the flavonols gossypetin (8-hydroxyquercetin) and to a lesser extent on quercetin, kaempferol and myricetin.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 83682-90-0
References:
1. Stich, K., Halbwirth, H., Wurst, F. and Forkmann, G. UDP-glucose:flavonol 7-O-glucosyltransferase activity in flower extracts of Chrysanthemum segetum. Z. Naturforsch. [C] 52 (1997) 153-158. [PMID: 9167271]
Accepted name: delphinidin 3,5-di-O-glucoside 3'-O-glucosyltransferase
Reaction: UDP-α-D-glucose + delphinidin 3,5-di-O-β-D-glucoside = UDP + delphinidin 3,3',5-tri-O-β-D-glucoside
For diagram of reaction click here.
Glossary: delphinidin = 3,3',4',5,5',7-hexahydroxyflavylium
Other name(s): UDP-glucose:anthocyanin 3'-O-glucosyltransferase; 3’GT
Systematic name: UDP-α-D-glucose:delphinidin-3,5-di-O-β-D-glucoside 3'-O-glucosyltransferase
Comments: Isolated from the plant Gentiana triflora (clustered gentian).
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 380231-41-4
References:
1. Fukuchi-Mizutani, M., Okuhara, H., Fukui, Y., Nakao, M., Katsumoto, Y., Yonekura-Sakakibara, K., Kusumi, T., Hase, T. and Tanaka, Y. Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol. 132 (2003) 1652-1663. [PMID: 12857844]
Accepted name: flavonol-3-O-glucoside glucosyltransferase
Reaction: UDP-glucose + a flavonol 3-O-β-D-glucoside = UDP + a flavonol 3-O-β-D-glucosyl-(1→2)-β-D-glucoside
See diagram for reaction with 3-O-β-D-glucosides of kaempferol or quercetin.
Other name(s): UDP-glucose:flavonol-3-O-glucoside 2"-O-β-D-glucosyltransferase
Systematic name: UDP-glucose:flavonol-3-O-β-D-glucoside 2"-O-β-D-glucosyltransferase
Comments: One of three specific glucosyltransferases in pea (Pisum sativum) that successively add a β-D-glucosyl group first to O-3 of kaempferol, and then to O-2 of the previously added glucosyl group giving the 3-O-sophoroside and then the 3-O-sophorotrioside (see also EC 2.4.1.91, flavonol 3-O-glucosyltransferase and EC 2.4.1.240, flavonol-3-O-glycoside glucosyltransferase). TDP-glucose can replace UDP-glucose as the glucose donor but the reaction proceeds more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number:
References:
1. Jourdan, P.S. and Mansell, R.L. Isolation and partial characterization of three glucosyl transferases involved in the biosynthesis of flavonol triglucosides in Pisum sativum L. Arch. Biochem. Biophys. 213 (1982) 434-443. [PMID: 6462109]
Accepted name: flavonol-3-O-glycoside glucosyltransferase
Reaction: UDP-glucose + a flavonol 3-O-β-D-glucosyl-(1→2)-β-D-glucoside = UDP + a flavonol 3-O-β-D-glucosyl-(1→2)-β-D-glucosyl-(1→2)-β-D-glucoside
See diagram for reaction with 3-O-β-D-glucosyl-(1→2)-β-D-glucosides of kaempferol or quercetin.
Systematic name: UDP-glucose:flavonol-3-O-β-D-glucosyl-(1→2)-β-D-glucoside 2'''-O-β-D-glucosyltransferase
Comments: One of three specific glucosyltransferases in pea (Pisum sativum) that successively add a β-D-glucosyl group first to O-3 of kaempferol, and then to O-2 of the previously added glucosyl group giving the 3-O-sophoroside and then the 3-O-sophorotrioside (see also EC 2.4.1.91 flavonol 3-O-glucosyltransferase, and EC 2.4.1.239 flavonol-3-O-glucoside glucosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number:
References:
1. Jourdan, P.S. and Mansell, R.L. Isolation and partial characterization of three glucosyl transferases involved in the biosynthesis of flavonol triglucosides in Pisum sativum L. Arch. Biochem. Biophys. 213 (1982) 434-443. [PMID: 6462109]
Accepted name: digalactosyldiacylglycerol synthase
Reaction: UDP-α-D-galactose + 1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol = UDP + 1,2-diacyl-3-O-[α-D-galactosyl-(1→6)-β-D-galactosyl]-sn-glycerol
For diagram click here.
Other name(s): DGD1; DGD2; DGDG synthase (ambiguous); UDP-galactose-dependent DGDG synthase; UDP-galactose-dependent digalactosyldiacylglycerol synthase; UDP-galactose:MGDG galactosyltransferase; UDP-galactose:3-(β-D-galactosyl)-1,2-diacyl-sn-glycerol 6-α-galactosyltransferase
Systematic name: UDP-α-D-galactose:3-(β-D-galactosyl)-1,2-diacyl-sn-glycerol 6-α-galactosyltransferase
Comments: Requires Mg2+. Diacylglycerol cannot serve as an acceptor molecule for galactosylation as in the reaction catalysed by EC 2.4.1.46, monogalactosyldiacylglyerol synthase. When phosphate is limiting, phospholipids in plant membranes are reduced but these are replaced, at least in part, by the glycolipids digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol [3]. While both DGD1 and DGD2 are increased under phosphate-limiting conditions, DGD2 does not contribute significantly under optimal growth conditions. DGD2 is responsible for the synthesis of DGDG molecular species that are rich in C16 fatty acids at sn-1 of diacylglycerol whereas DGD1 leads to molecular species rich in C18 fatty acids [3]. The enzyme has been localized to the outer side of chloroplast envelope membranes.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number:
References:
1. Kelly, A.A. and Dörmann, P. DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J. Biol. Chem. 277 (2002) 1166-1173. [PMID: 11696551]
2. Härtel, H., Dörmann, P. and Benning, C. DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc. Natl. Acad. Sci. USA 97 (2000) 10649-10654. [PMID: 10973486]
3. Kelly, A.A., Froehlich, J.E. and Dörmann, P. Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15 (2003) 2694-2706. [PMID: 14600212]
4. Benning, C. and Ohta, H. Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J. Biol. Chem. 280 (2005) 2397-2400. [PMID: 15590685]
Accepted name: NDP-glucosestarch glucosyltransferase
Reaction: NDP-glucose + [(1→4)-α-D-glucosyl]n = NDP + [(1→4)-α-D-glucosyl]n+1
Other name(s): granule-bound starch synthase; starch synthase II (ambiguous); waxy protein; starch granule-bound nucleoside diphosphate glucose-starch glucosyltransferase; granule-bound starch synthase I; GBSSI; granule-bound starch synthase II; GBSSII; GBSS; NDPglucose-starch glucosyltransferase
Systematic name: NDP-glucose:1,4-α-D-glucan 4-α-D-glucosyltransferase
Comments: Unlike EC 2.4.1.11, glycogen(starch) synthase and EC 2.4.1.21, starch synthase, which use UDP-glucose and ADP-glucose, respectively, this enzyme can use either UDP- or ADP-glucose. Mutants that lack the Wx (waxy) allele cannot produce this enzyme, which plays an important role in the normal synthesis of amylose. In such mutants, only amylopectin is produced in the endosperm [3] or pollen [5].
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 9031-53-2
References:
1. Tsai, C.-Y. The function of the waxy locus in starch synthesis in maize endosperm. Biochem. Genet. 11 (1974) 83-96. [PMID: 4824506]
2. Nakamura, T., Vrinten, P., Hayakawa, K. and Ikeda, J. Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiol. 118 (1998) 451-459. [PMID: 9765530]
3. Fujita, N. and Taira, T. A 56-kDa protein is a novel granule-bound starch synthase existing in the pericarps, aleurone layers, and embryos of immature seed in diploid wheat (Triticum monococcum L.). Planta 207 (1998) 125-132. [PMID: 9951718]
4. Murai, J., Taira, T. and Ohta, D. Isolation and characterization of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat. Gene 234 (1999) 71-79. [PMID: 10393240]
5. Nelson, O.E. The waxy locus in maize. II The location of the controlling element alleles. Genetics 60 (1968) 507-524.
Accepted name: 6G-fructosyltransferase
Reaction: [1-β-D-fructofuranosyl-(2→1)-]m+1 α-D-glucopyranoside + [1-β-D-fructofuranosyl-(2→1)-]n+1 α-D-glucopyranoside = [1-β-D-fructofuranosyl-(2→1)-]m α-D-glucopyranoside + [1-β-D-fructofuranosyl-(2→1)-]n+1 β-D-fructofuranosyl-(2→6)-α-D-glucopyranoside (m > 0; n ≥ 0)
Other name(s): fructan:fructan 6G-fructosyltransferase; 1F(1-β-D-fructofuranosyl)m sucrose:1F(1-β-D-fructofuranosyl)nsucrose 6G-fructosyltransferase; 6G-FFT; 6G-FT; 6G-fructotransferase
Systematic name: 1F-oligo[β-D-fructofuranosyl-(2→1)-]sucrose 6G-β-D-fructotransferase
Comments: Inulins are polysaccharides consisting of linear or branched D-fructofuranosyl chains attached to the fructosyl residue of sucrose by a β(2→1) linkage. This enzyme catalyses the transfer of the terminal (2→1)-linked -D-fructosyl group of an inulin chain onto O-6 position of the glucose residue of another inulin molecule [1]. For example, if 1-kestose [1F-(β-D-fructofuranosyl)sucrose] is both the donor and recipient in the reaction shown above, i.e., if m = 1 and n = 1, then the products will be sucrose and 6G-di-β-D-fructofuranosylsucrose. In this notation, the superscripts F and G are used to specify whether the fructose or glucose residue of the sucrose carries the substituent. Alternatively, this may be indicated by the presence and/or absence of primes (see 2-Carb-36.2). Sucrose cannot be a donor substrate in the reaction (i.e. m cannot be zero) and inulin cannot act as an acceptor. Side reactions catalysed are transfer of a β-D-fructosyl group between compounds of the structure 1F-(1-β-D-fructofuranosyl)m-6G-(1-β-D-fructofuranosyl)n sucrose, where m ≥ 0 and n = 1 for the donor, and m ≥ 0 and n ≥ 0 for the acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 79633-28-6
References:
1. Shiomi, N. Purification and characterisation of 6G-fructosyltransferase from the roots of asparagus (Asparagus officinalis L.). Carbohydr. Res. 96 (1981) 281-292.
2. Shiomi, N. Reverse reaction of fructosyl transfer catalysed by asparagus 6G-fructosyltransferase. Carbohydr. Res. 106 (1982) 166-169.
3. Shiomi, N. and Ueno, K. Cloning and expression of genes encoding fructosyltransferases from higher plants in food technology. J. Appl. Glycosci. 51 (2004) 177-183.
4. Ueno, K., Onodera, S., Kawakami, A., Yoshida, M. and Shiomi, N. Molecular characterization and expression of a cDNA encoding fructan:fructan 6G-fructosyltransferase from asparagus (Asparagus officinalis). New Phytol. 165 (2005) 813-824. [PMID: 15720693]
Accepted name: N-acetyl-β-glucosaminyl-glycoprotein 4-β-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N-acetyl-β-D-glucosaminyl group = UDP + N-acetyl-β-D-galactosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl group
Glossary: N,N'-diacetyllactosediamine = N-acetyl-β-D-galactosaminyl-(1→4)-N-acetyl-D-glucosamine
Other name(s): β1,4-N-acetylgalactosaminyltransferase III; β4GalNAc-T3; β1,4-N-acetylgalactosaminyltransferase IV; β4GalNAc-T4; UDP-N-acetyl-D-galactosamine:N-acetyl-β-D-glucosaminyl-group β-1,4-N-acetylgalactosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-galactosamine:N-acetyl-β-D-glucosaminyl-group β-1,4-N-acetylgalactosaminyltransferase
Comments: The enzyme from human can transfer N-acetyl-D-galactosamine (GalNAc) to N-glycan and O-glycan substrates that have N-acetyl-D-glucosamine (GlcNAc) but not D-glucuronic acid (GlcUA) at their non-reducing end. The N-acetyl-β-D-glucosaminyl group is normally on a core oligosaccharide although benzyl glycosides have been used in enzyme-characterization experiments. Some glycohormones, e.g. lutropin and thyrotropin contain the N-glycan structure containing the N-acetyl-β-D-galactosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl group.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number:
References:
1. Sato, T., Gotoh, M., Kiyohara, K., Kameyama, A., Kubota, T., Kikuchi, N., Ishizuka, Y., Iwasaki, H., Togayachi, A., Kudo, T., Ohkura, T., Nakanishi, H. and Narimatsu, H. Molecular cloning and characterization of a novel human β1,4-N-acetylgalactosaminyltransferase, β4GalNAc-T3, responsible for the synthesis of N,N'-diacetyllactosediamine, GalNAc β1-4GlcNAc. J. Biol. Chem. 278 (2003) 47534-47544. [PMID: 12966086]
2. Gotoh, M., Sato, T., Kiyohara, K., Kameyama, A., Kikuchi, N., Kwon, Y.D., Ishizuka, Y., Iwai, T., Nakanishi, H. and Narimatsu, H. Molecular cloning and characterization of β1,4-N-acetylgalactosaminyltransferases IV synthesizing N,N'-diacetyllactosediamine. FEBS Lett. 562 (2004) 134-140. [PMID: 15044014]
Accepted name: α,α-trehalose synthase
Reaction: NDP-α-D-glucose + D-glucose = α,α-trehalose + NDP
Glossary: NDP = a nucleoside diphosphate
Other name(s): trehalose synthase; trehalose synthetase; UDP-glucose:glucose 1-glucosyltransferase; TreT; PhGT; ADP-glucose:D-glucose 1-α-D-glucosyltransferase
Systematic name: NDP-α-D-glucose:D-glucose 1-α-D-glucosyltransferase
Comments: Requires Mg2+ for maximal activity [1]. The enzyme-catalysed reaction is reversible [1]. In the reverse direction to that shown above, the enzyme is specific for α,α-trehalose as substrate, as it cannot use α- or β-paranitrophenyl glucosides, maltose, sucrose, lactose or cellobiose [1]. While the enzymes from the thermophilic bacterium Rubrobacter xylanophilus and the hyperthermophilic archaeon Pyrococcus horikoshii can use ADP-, UDP- and GDP-α-D-glucose to the same extent [2,3], that from the hyperthermophilic archaeon Thermococcus litoralis has a marked preference for ADP-α-D-glucose [1] and that from the hyperthermophilic archaeon Thermoproteus tenax has a marked preference for UDP-α-D-glucose [4].
Links to other databases: BRENDA, EXPASY, KEGG Metacyc, PDB, CAS registry number:
References:
1. Qu, Q., Lee, S.J. and Boos, W. TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J. Biol. Chem. 279 (2004) 47890-47897. [PMID: 15364950]
2. Ryu, S.I., Park, C.S., Cha, J., Woo, E.J. and Lee, S.B. A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: molecular cloning and characterization. Biochem. Biophys. Res. Commun. 329 (2005) 429-436. [PMID: 15737605]
3. Nobre, A., Alarico, S., Fernandes, C., Empadinhas, N. and da Costa, M.S. A unique combination of genetic systems for the synthesis of trehalose in Rubrobacter xylanophilus: properties of a rare actinobacterial TreT. J. Bacteriol. 190 (2008) 7939-7946. [PMID: 18835983]
4. Kouril, T., Zaparty, M., Marrero, J., Brinkmann, H. and Siebers, B. A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch. Microbiol. 190 (2008) 355-369. [PMID: 18483808]
Accepted name: mannosylfructose-phosphate synthase
Reaction: GDP-mannose + D-fructose 6-phosphate = GDP + β-D-fructofuranosyl-α-D-mannopyranoside 6F-phosphate
Glossary: mannosylfructose = β-D-fructofuranosyl-α-D-mannopyranoside
Other name(s): mannosylfructose-6-phosphate synthase; MFPS
Systematic name: GDP-mannose:D-fructose-6-phosphate 2-α-D-mannosyltransferase
Comments: This enzyme, from the soil proteobacterium and plant pathogen Agrobacterium tumefaciens strain C58, requires Mg2+ or Mn2+ for activity. GDP-mannose can be replaced by ADP-mannose but with a concomitant decrease in activity. The product of this reaction is dephosphorylated by EC 3.1.3.79 (mannosylfructose-phosphate phosphatase) to form the non-reducing disaccharide mannosylfructose, which is the major endogenous osmolyte produced by several α-proteobacteria in response to osmotic stress. The F in the product name is used to indicate that the fructose residue of sucrose carries the substituent.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number:
References:
1. Torres, L.L. and Salerno, G.L. A metabolic pathway leading to mannosylfructose biosynthesis in Agrobacterium tumefaciens uncovers a family of mannosyltransferases. Proc. Natl. Acad. Sci. USA 104 (2007) 14318–14323. [PMID: 17728402]
Accepted name: β-D-galactosyl-(1→4)-L-rhamnose phosphorylase
Reaction: β-D-galactosyl-(1→4)-L-rhamnose + phosphate = L-rhamnose + α-D-galactose 1-phosphate
Other name(s): D-galactosyl-β1→4-L-rhamnose phosphorylase; GalRhaP
Systematic name: β-D-galactosyl-(1→4)-L-rhamnose:phosphate 1-α-D-galactosyltransferase
Comments: The enzyme from Clostridium phytofermentans is also active towards towards β-D-galactosyl derivatives of L-mannose, L-lyxose, D-glucose, 2-deoxy-D-glucose, and D-galactose in this order. Differs from 1,3-β-galactosyl-N-acetylhexosamine phosphorylase (EC 2.4.1.211) in being active towards L-rhamnose and inactive towards N-acetyl hexosamine derivatives.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 1236189-79-9
References:
1. Nakajima, M., Nishimoto, M. and Kitaoka, M. Characterization of three β-galactoside phosphorylases from Clostridium phytofermentans: discovery of D-galactosyl-β1→4-L-rhamnose phosphorylase. J. Biol. Chem. 284 (2009) 19220-19227. [PMID: 19491100]
Accepted name: cycloisomaltooligosaccharide glucanotransferase
Reaction: cyclizes part of a (1→6)-α-D-glucan chain by formation of a (1→6)-α-D-glucosidic bond
Systematic name: (1→6)-α-D-glucan:(1→6)-α-D-glucan 6-α-D-[1→6α-D-glucano]-transferase (cyclizing)
Comments: Specific for (1→6)-α-D-glucans (dextrans) and, unlike cyclomaltodextrin glucanotransferase (EC 2.4.1.19), without activity towards (1→4)-α-D-glucans, such as amylose. It also has no activity on oligosaccharides, such as amylopectin and pullulan, containing (1→6)-α-D-glucosidic linkages at branch points. The enzyme from Bacillus circulans T-3040 has been shown to form cycloisomalto-oligosaccharides of three sizes (7, 8 and 9 glucose units). It will also catalyse the disproportionation of two isomalto-oligosaccharides molecules to yield a series of isomalto-oligosachharides and the addition of D-glucose to cycloisomalto-oligosaccharides with ring opening to form isomalto-oligosaccharides.
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number:
References:
1. Oguma T, Horiuchi, T, and Kobayashi M. Novel Cyclic dextrins, Cycloisomaltooligosaccharides, from Bacillus sp. T-3040 culture. Biosci. Biotech. Biochem. 57 (1993) 1225-1227.
2. Oguma, T., Tobe, K. and Kobayashi, M. Purification and properties of a novel enzyme from Bacillus spp. T-3040, which catalyzes the conversion of dextran to cyclic isomaltooligosaccharides. FEBS Lett. 345 (1994) 135-138. [PMID: 7515357]
3. Yamamoto, T., Terasawa, K., Kim, Y.M., Kimura, A., Kitamura, Y., Kobayashi, M. and Funane, K. Identification of catalytic amino acids of cyclodextran glucanotransferase from Bacillus circulans T-3040. Biosci. Biotechnol. Biochem. 70 (2006) 1947-1953. [PMID: 16926507]
Accepted name: delphinidin 3',5'-O-glucosyltransferase
Reaction: 2 UDP-glucose + delphinidin 3-O-(6"-O-malonyl)-β-D-glucoside = 2 UDP + delphinidin 3-O-(6"-O-malonyl)-β-D-glucoside-3',5'-di-O-β-D-glucoside (overall reaction)
(1a) UDP-glucose + delphinidin 3-O-(6"-O-malonyl)-β-D-glucoside = UDP + delphinidin 3-O-(6"-O-malonyl)-β-D-glucoside-3'-O-β-D-glucoside
(1b) UDP-glucose + delphinidin 3-O-(6"-O-malonyl)-β-D-glucoside-3'-O-β-D-glucoside = UDP + delphinidin 3-O-(6"-O-malonyl)-β-D-glucoside-3',5'-di-O-β-D-glucoside
For diagram of reaction click here.
Glossary: delphinidin 3-O-(6"-O-malonyl)-β-D-glucoside-3',5'-di-O-β-D-glucoside = ternatin C5.
Other name(s): UDP-glucose:anthocyanin 3',5'-O-glucosyltransferase; UA3'5’GZ
Systematic name: UDP-glucose:delphinidin 3-O-(6"-O-malonyl)-β-D-glucoside 3'-O-glucosyltransferase
Comments: Ternatins are a group of polyacetylated delphinidin glucosides that confer blue color to the petals of butterfly pea (Clitoria ternatea). This enzyme catalyses two reactions in the biosynthesis of ternatin C5: the conversion of delphinidin 3-O-(6"-O-malonyl)-β-D-glucoside to delphinidin 3-O-(6"-O-malonyl)-β-D-glucoside-3'-O-β-D-glucoside, followed by the conversion of the later to ternatin C5, by transferring two glucosyl groups in a stepwise manner [1].
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number:
References:
1. Kogawa, K., Kato, N., Kazuma, K., Noda, N. and Suzuki, M. Purification and characterization of UDP-glucose: anthocyanin 3',5'-O-glucosyltransferase from Clitoria ternatea. Planta 226 (2007) 1501-1509. [PMID: 17668234]
Accepted name: D-inositol-3-phosphate glycosyltransferase
Reaction: UDP-N-acetyl-D-glucosamine + 1D-myo-inositol 3-phosphate = 1-O-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol 3-phosphate + UDP
For diagram of reaction click here
Other name(s): mycothiol glycosyltransferases; MshA
Systematic name: UDP-N-acetyl-D-glucosamine:1D-myo-inositol 3-phosphate α-D-glycosyltransferase
Comments: The enzyme, which belongs to the GT-B fold superfamily, catalyses the first dedicated reaction in the biosynthesis of mycothiol [1]. The substrate was initially believed to be inositol, but eventually shown to be D-myo-inositol 3-phosphate [2]. A substantial conformational change occurs upon UDP binding, which generates the binding site for D-myo-inositol 3-phosphate [3]
Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number:
References:
1. Newton, G.L., Koledin, T., Gorovitz, B., Rawat, M., Fahey, R.C. and Av-Gay, Y. The glycosyltransferase gene encoding the enzyme catalyzing the first step of mycothiol biosynthesis (mshA). J. Bacteriol. 185 (2003) 3476-3479. [PMID: 12754249]
2. Newton, G.L., Ta, P., Bzymek, K.P. and Fahey, R.C. Biochemistry of the initial steps of mycothiol biosynthesis. J. Biol. Chem. 281 (2006) 33910-33920. [PMID: 16940050]
3. Vetting, M.W., Frantom, P.A. and Blanchard, J.S. Structural and enzymatic analysis of MshA from Corynebacterium glutamicum: substrate-assisted catalysis. J. Biol. Chem. 283 (2008) 15834-15844. [PMID: 18390549]