Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB)

Proposed Changes to the Enzyme List

The entries below are proposed additions and amendments to the Enzyme Nomenclature list. They were prepared for the NC-IUBMB by Keith Tipton, Sinéad Boyce, Gerry Moss and Hal Dixon, with occasional help from other Committee members, and were put on the web by Gerry Moss. Comments and suggestions on these draft entries should be sent to Professor K.F. Tipton and Dr S. Boyce (Department of Biochemistry, Trinity College Dublin, Dublin 2, Ireland). These entries were made public September 2005 and approved November 2005.

An asterisk before 'EC' indicates that this is an amendment to an existing enzyme rather than a new enzyme entry.


Contents

EC 1.1.1.288 xanthoxin dehydrogenase
EC 1.2.3.14 abscisic aldehyde oxidase
EC 1.3.3.2 now EC 1.14.21.6
EC 1.3.99.23 all-trans-retinol 13,14-reductase
*EC 1.8.1.14 CoA-disulfide reductase
EC 1.13.11.51 9-cis-epoxycarotenoid dioxygenase
EC 1.14.11.26 deacetoxycephalosporin-C hydroxylase
EC 1.14.13.93 (+)-abscisic acid 8'-hydroxylase
EC 1.14.21.6 lathosterol oxidase
EC 2.3.1.175 deacetylcephalosporin-C acetyltransferase
*EC 2.6.1.21 D-amino acid transaminase
EC 3.5.1.93 glutaryl-7-aminocephalosporanic-acid acylase
EC 3.13.1.2 deleted probably EC 4.4.1.21
EC 4.1.1.85 3-dehydro-L-gulonate-6-phosphate decarboxylase
*EC 5.1.3.4 L-ribulose-5-phosphate 4-epimerase
EC 5.1.3.22 L-ribulose-5-phosphate 3-epimerase
EC 5.3.99.8 capsanthin/capsorubin synthase
EC 5.3.99.9 neoxanthin synthase


EC 1.1.1.288

Common name: xanthoxin dehydrogenase

Reaction: xanthoxin + NAD+ = abscisic aldehyde + NADH + H+

For diagram click here (mechanism).

Other name(s): xanthoxin oxidase; ABA2

Systematic name: xanthoxin:NAD+ oxidoreductase

Comments: Requires a molybdenum cofactor for activity. NADP+ cannot replace NAD+ and short-chain alcohols such as ethanol, isopropanol, butanol and cyclohexanol cannot replace xanthoxin as substrate [3]. Involved in the abscisic-acid biosynthesis pathway in plants, along with EC 1.2.3.14 (abscisic aldehyde oxidase), EC 1.13.11.51 (9-cis-epoxycarotenoid dioxygenase) and EC 1.14.13.93 [(+)-abscisic acid 8'-hydroxylase]. Abscisic acid is a sesquiterpenoid plant hormone that is involved in the control of a wide range of essential physiological processes, including seed development, germination and responses to stress [3].

References:

1. Sindhu, R.K. and Walton, D.C. Xanthoxin metabolism in cell-free preparations from wild type and wilty mutants of tomato. Plant Physiol. 88 (1988) 178-182.

2. Schwartz, S.H., Leon-Kloosterziel, K.M., Koornneef, M. and Zeevaart, J.A. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol. 114 (1997) 161-166. [PMID: 9159947]

3. González-Guzmán, M., Apostolova, N., Bellés, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R. and Rodríguez, P.L. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell. 14 (2002) 1833-1846. [PMID: 12172025]

[EC 1.1.1.288 created 2005]

EC 1.2.3.14

Common name: abscisic-aldehyde oxidase

Reaction: abscisic aldehyde + H2O + O2 = abscisate + H2O2

For diagram click here.

Other name(s): abscisic aldehyde oxidase; AAO3; AOd

Systematic name: abscisic-aldehyde:oxygen oxidoreductase

Comments: Acts on both (+)- and (-)-abscisic aldehyde. Involved in the abscisic-acid biosynthesis pathway in plants, along with EC 1.1.1.288, (xanthoxin dehydrogenase), EC 1.13.11.51 (9-cis-epoxycarotenoid dioxygenase) and EC 1.14.13.93 [(+)-abscisic acid 8'-hydroxylase]. While abscisic aldehyde is the best substrate, the enzyme also acts with indole-3-aldehyde, 1-naphthaldehyde and benzaldehyde as substrates, but more slowly [3].

References:

1. Sagi, M., Fluhr, R. and Lips, S.H. Aldehyde oxidase and xanthin dehydrogenase in a flacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol. 120 (1999) 571-577. [PMID: 10364409]

2. Seo, M., Peeters, A.J., Koiwai, H., Oritani, T., Marion-Poll, A., Zeevaart, J.A., Koornneef, M., Kamiya, Y. and Koshiba, T. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl. Acad. Sci. USA 97 (2000) 12908-12913. [PMID: 11050171]

3. Seo, M., Koiwai, H., Akaba, S., Komano, T., Oritani, T., Kamiya, Y. and Koshiba, T. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J. 23 (2000) 481-488. [PMID: 10972874]

[EC 1.2.3.14 created 2005]

[EC 1.3.3.2 Transferred entry: now EC 1.14.21.6, lathosterol oxidase. NAD(P)H had not been included previously, so enzyme had to be reclassified (EC 1.3.3.2 created 1972, deleted 2005)]

EC 1.3.99.23

Common name: all-trans-retinol 13,14-reductase

Reaction: all-trans-13,14-dihydroretinol + acceptor = all-trans-retinol + reduced acceptor

Other name(s): retinol saturase; RetSat; (13,14)-all-trans-retinol saturase; all-trans-retinol:all-trans-13,14-dihydroretinol saturase

Systematic name: all-trans-13,14-dihydroretinol:acceptor 13,14-oxidoreductase

Comments: The reaction is only known to occur in the opposite direction to that given above, with the enzyme being specific for all-trans-retinol as substrate. Neither all-trans-retinoic acid nor 9-cis, 11-cis or 13-cis-retinol isomers are substrates. May play a role in the metabolism of vitamin A.

References:

1. Moise, A.R., Kuksa, V., Imanishi, Y. and Palczewski, K. Identification of all-trans-retinol:all-trans-13,14-dihydroretinol saturase. J. Biol. Chem. 279 (2004) 50230-50242. [PMID: 15358783]

[EC 1.3.99.23 created 2005]

*EC 1.8.1.14

Common name: CoA-disulfide reductase

Reaction: 2 CoA + NAD(P)+ = CoA-disulfide + NAD(P)H + H+

Other name(s): CoA-disulfide reductase (NADH2); NADH2:CoA-disulfide oxidoreductase; CoA:NAD+ oxidoreductase; CoADR; coenzyme A disulfide reductase

Systematic name: CoA:NAD(P)+ oxidoreductase

Comments: A flavoprotein. Not identical with EC 1.8.1.6 (cystine reductase), EC 1.8.1.7 (glutathione-disulfide reductase) or EC 1.8.1.13 (bis-γ-glutamylcystine reductase). While the enzyme from Staphylococcus aureus has a strong preference for NADPH [3], that from the thermophilic Archaea Pyrococcus horikoshii can use both NADH and NADPH efficiently [4].

Links to other databases: BRENDA, EXPASY, KEGG, ERGO, CAS registry number: 206770-55-0

References:

1. Setlow, B. and Setlow, P. Levels of acetyl coenzyme A, reduced and oxidized coenzyme A, and coenzyme A in disulfide linkage to protein in dormant and germinated spores and growing and sporulating cells of Bacillus megaterium. J. Bacteriol. 132 (1977) 444-452. [PMID: 410791]

2. delCardayré, S.B., Stock, K.P., Newton, G.L., Fahey, R.C. and Davies, J.E. Coenzyme A disulfide reductase, the primary low molecular weight disulfide reductase from Staphylococcus aureus. Purification and characterization of the native enzyme. J. Biol. Chem. 273 (1998) 5744-5751. [PMID: 9488707]

3. Luba, J., Charrier, V. and Claiborne, A. Coenzyme A-disulfide reductase from Staphylococcus aureus: evidence for asymmetric behavior on interaction with pyridine nucleotides. Biochemistry 38 (1999) 2725-2737. [PMID: 10052943]

4. Harris, D.R., Ward, D.E., Feasel, J.M., Lancaster, K.M., Murphy, R.D., Mallet, T.C. and Crane, E.J., 3rd. Discovery and characterization of a coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles. FEBS J. 272 (2005) 1189-1200. [PMID: 15720393]

[EC 1.8.1.14 created 1992 as EC 1.6.4.10, transferred 2002 to EC 1.8.1.14, modified 2005]

EC 1.13.11.51

Common name: 9-cis-epoxycarotenoid dioxygenase

Reaction: (1) a 9-cis-epoxycarotenoid + O2 = 2-cis,4-trans-xanthoxin + a 12'-apo-carotenal

(2) 9-cis-violaxanthin + O2 = 2-cis,4-trans-xanthoxin + (3S,5R,6S)-5,6-epoxy-3-hydroxy-5,6-dihydro-12'-apo-β-caroten-12'-al

(3) 9'-cis-neoxanthin + O2 = 2-cis,4-trans-xanthoxin + (3S,5R,6R)-5,6-dihydroxy-6,7-didehydro-5,6-dihydro-12'-apo-β-caroten-12'-al

For diagram click here.

Other name(s): nine-cis-epoxycarotenoid dioxygenase; NCED; AtNCED3; PvNCED1; VP14

Systematic name: 9-cis-epoxycarotenoid 11,12-dioxygenase

Comments: Requires iron(II). Acts on 9-cis-violaxanthin and 9'-cis-neoxanthin but not on the all-trans isomers [2,3]. In vitro, it will cleave 9-cis-zeaxanthin. Catalyses the first step of abscisic-acid biosynthesis from carotenoids in chloroplasts, in response to water stress. The other enzymes involved in the abscisic-acid biosynthesis pathway are EC 1.1.1.288 (xanthoxin dehydrogenase), EC 1.2.3.14 (abscisic aldehyde oxidase) and EC 1.14.13.93 [(+)-abscisic acid 8'-hydroxylase].

References:

1. Schwartz, S.H., Tan, B.C., Gage, D.A., Zeevaart, J.A. and McCarty, D.R. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276 (1997) 1872-1874. [PMID: 9188535]

2. Tan, B.C., Schwartz, S.H., Zeevaart, J.A. and McCarty, D.R. Genetic control of abscisic acid biosynthesis in maize. Proc. Natl. Acad. Sci. USA 94 (1997) 12235-12240. [PMID: 9342392]

3. Qin, X. and Zeevaart, J.A. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc. Natl. Acad. Sci. USA 96 (1999) 15354-15361. [PMID: 10611388]

4. Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A. and Taylor, I.B. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J. 23 (2000) 363-374. [PMID: 10929129]

5. Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27 (2001) 325-333. [PMID: 11532178]

6. Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Erratum. Plant J. 30 (2002) 611. [PMID: 11532178]

[EC 1.13.11.51 created 2005]

EC 1.14.11.26

Common name: deacetoxycephalosporin-C hydroxylase

Reaction: deacetoxycephalosporin C + 2-oxoglutarate + O2 = deacetylcephalosporin C + succinate + CO2

For diagram click here.

Other name(s): deacetylcephalosporin C synthase; 3'-methylcephem hydroxylase; DACS; DAOC hydroxylase; deacetoxycephalosporin C hydroxylase

Systematic name: deacetoxycephalosporin-C,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)

Comments: Requires iron(II). The enzyme can also use 3-exomethylenecephalosporin C as a substrate to form deacetoxycephalosporin C, although more slowly [2]. In Acremonium chrysogenum, the enzyme forms part of a bifunctional protein along with EC 1.14.20.1, deactoxycephalosporin-C synthase. It is a separate enzyme in Streptomyces clavuligerus.

References:

1. Dotzlaf, J.E. and Yeh, W.K. Copurification and characterization of deacetoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium. J. Bacteriol. 169 (1987) 1611-1618. [PMID: 3558321]

2. Baker, B.J., Dotzlaf, J.E. and Yeh, W.K. Deacetoxycephalosporin C hydroxylase of Streptomyces clavuligerus. Purification, characterization, bifunctionality, and evolutionary implication. J. Biol. Chem. 266 (1991) 5087-5093. [PMID: 2002049]

3. Coque, J.J., Enguita, F.J., Cardoza, R.E., Martin, J.F. and Liras, P. Characterization of the cefF gene of Nocardia lactamdurans encoding a 3'-methylcephem hydroxylase different from the 7-cephem hydroxylase. Appl. Microbiol. Biotechnol. 44 (1996) 605-609. [PMID: 8703431]

4. Ghag, S.K., Brems, D.N., Hassell, T.C. and Yeh, W.K. Refolding and purification of Cephalosporium acremonium deacetoxycephalosporin C synthetase/hydroxylase from granules of recombinant Escherichia coli. Biotechnol. Appl. Biochem. 24 (1996) 109-119. [PMID: 8865604]

5. Lloyd, M.D., Lipscomb, S.J., Hewitson, K.S., Hensgens, C.M., Baldwin, J.E. and Schofield, C.J. Controlling the substrate selectivity of deacetoxycephalosporin/deacetylcephalosporin C synthase. J. Biol. Chem. 279 (2004) 15420-15426. [PMID: 14734549]

6. Wu, X.B., Fan, K.Q., Wang, Q.H. and Yang, K.Q. C-terminus mutations of Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase with improved activity toward penicillin analogs. FEMS Microbiol. Lett. 246 (2005) 103-110. [PMID: 15869968]

7. Martín, J.F., Gutiérrez, S., Fernández, F.J., Velasco, J., Fierro, F., Marcos, A.T. and Kosalkova, K. Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins. Antonie Van Leeuwenhoek 65 (1994) 227-43. [PMID: 7847890]

[EC 1.14.11.26 created 2005]

EC 1.14.13.93

Common name: (+)-abscisic acid 8'-hydroxylase

Reaction: (+)-abscisate + NADPH + H+ + O2 = 8'-hydroxyabscisate + NADP+ + H2O

For diagram click here.

Other name(s): (+)-ABA 8'-hydroxylase; ABA 8'-hydroxylase

Systematic name: abscisate,NADPH:oxygen oxidoreductase (8'-hydroxylating)

Comments: A heme-thiolate protein (P-450). Catalyses the first step in the oxidative degradation of abscisic acid and is considered to be the pivotal enzyme in controlling the rate of degradation of this plant hormone [1]. CO inhibits the reaction, but its effects can be reversed by the presence of blue light [1]. The 8'-hydroxyabscisate formed can be converted into (-)-phaseic acid, most probably spontaneously. Other enzymes involved in the abscisic-acid biosynthesis pathway are EC 1.1.1.288 (xanthoxin dehydrogenase), EC 1.2.3.14 (abscisic aldehyde oxidase) and EC 1.13.11.51 (9-cis-epoxycarotenoid dioxygenase).

References:

1. Cutler, A.J., Squires, T.M., Loewen, M.K. and Balsevich, J.J. Induction of (+)-abscisic acid 8' hydroxylase by (+)-abscisic acid in cultured maize cells. J. Exp. Bot. 48 (1997) 1787-1795.

2. Krochko, J.E., Abrams, G.D., Loewen, M.K., Abrams, S.R. and Cutler, A.J. (+)-Abscisic acid 8'-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol. 118 (1998) 849-860. [PMID: 9808729]

[EC 1.14.13.93 created 2005]

EC 1.14.21.6

Common name: lathosterol oxidase

Reaction: 5α-cholest-7-en-3β-ol + NAD(P)H + H+ + O2 = cholesta-5,7-dien-3β-ol + NAD(P)+ + 2 H2O

For diagram click here.

Glossary: lathosterol = 5α-cholest-7-en-3β-ol
7-dehydrocholesterol = cholesta-5,7-dien-3β-ol

Other name(s): δ7-sterol δ5-dehydrogenase; δ7-sterol 5-desaturase; δ7-sterol-C5(6)-desaturase; 5-DES

Systematic name: 5α-cholest-7-en-3β-ol, NAD(P)H:oxygen 5-oxidoreductase

Comments: This enzyme catalyses the introduction of a C5 double bond into the B ring of δ7-sterols to yield the corresponding δ5,7-sterols in mammals, yeast and plants [4]. Forms part of the plant sterol biosynthesis pathway.

Links to other databases: BRENDA, EXPASY, KEGG, ERGO, CAS registry number: 37255-37-1

References:

1. Dempsey, M.E., Seaton, J.D., Schroepfer, G.J. and Trockman, R.W. The intermediary role of δ5,7-cholestadien-3β-ol in cholesterol biosynthesis. J. Biol. Chem. 239 (1964) 1381-1387. [PMID: 14189869]

2. Nishino, H., Nakaya, J., Nishi, S., Kurosawa, T. and Ishibashi, T. Temperature-induced differential kinetic properties between an initial burst and the following steady state in membrane-bound enzymes: studies on lathosterol 5-desaturase. Arch. Biochem. Biophys. 339 (1997) 298-304. [PMID: 9056262]

3. Taton, M. and Rahier, A. Plant sterol biosynthesis: identification and characterization of higher plant δ7-sterol C5(6)-desaturase. Arch. Biochem. Biophys. 325 (1996) 279-288. [PMID: 8561508]

4. Taton, M., Husselstein, T., Benveniste, P. and Rahier, A. Role of highly conserved residues in the reaction catalyzed by recombinant δ7-sterol-C5(6)-desaturase studied by site-directed mutagenesis. Biochemistry 39 (2000) 701-711. [PMID: 10651635]

[EC 1.14.21.6 created 1972 as EC 1.3.3.2, transferred 2005 to EC 1.14.21.6]

EC 2.3.1.175

Common name: deacetylcephalosporin-C acetyltransferase

Reaction: acetyl-CoA + deacetylcephalosporin C = CoA + cephalosporin C

For diagram click here.

Other name(s): acetyl-CoA:deacetylcephalosporin-C acetyltransferase; DAC acetyltransferase; cefG; deacetylcephalosporin C acetyltransferase; acetyl coenzyme A:DAC acetyltransferase; acetyl-CoA:DAC acetyltransferase; CPC acetylhydrolase; acetyl-CoA:DAC O-acetyltransferase; DAC-AT

Systematic name: acetyl-CoA:deacetylcephalosporin-C O-acetyltransferase

Comments: This enzyme catalyses the final step in the biosynthesis of cephalosporin C.

References:

1. Matsuyama, K., Matsumoto, H., Matsuda, A., Sugiura, H., Komatsu, K. and Ichikawa, S. Purification of acetyl coenzyme A: deacetylacephalosporin C O-acetyltransferase from Acremonium chrysogenum. Biosci. Biotechnol. Biochem. 56 (1992) 1410-1412. [PMID: 1368946]

2. Gutiérrez, S., Velasco, J., Fernandez, F.J. and Martín, J.F. The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase. J. Bacteriol. 174 (1992) 3056-3064. [PMID: 1569032]

3. Matsuda, A., Sugiura, H., Matsuyama, K., Matsumoto, H., Ichikawa, S. and Komatsu, K. Cloning and disruption of the cefG gene encoding acetyl coenzyme A: deacetylcephalosporin C O-acetyltransferase from Acremonium chrysogenum. Biochem. Biophys. Res. Commun. 186 (1992) 40-46. [PMID: 1632779]

4. Gutiérrez, S., Velasco, J., Marcos, A.T., Fernández, F.J., Fierro, F., Barredo, J.L., Díez, B. and Martín, J.F. Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl. Microbiol. Biotechnol. 48 (1997) 606-614. [PMID: 9421924]

5. Velasco, J., Gutierrez, S., Campoy, S. and Martin, J.F. Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits. Biochem. J. 337 (1999) 379-385. [PMID: 9895280]

6. Martín, J.F., Gutiérrez, S., Fernández, F.J., Velasco, J., Fierro, F., Marcos, A.T. and Kosalkova, K. Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins. Antonie Van Leeuwenhoek 65 (1994) 227-43. [PMID: 7847890]

[EC 2.3.1.175 created 2005]

*EC 2.6.1.21

Common name: D-amino-acid transaminase

Reaction: D-alanine + 2-oxoglutarate = pyruvate + D-glutamate

Other name(s): D-aspartate transaminase; D-alanine aminotransferase; D-aspartic aminotransferase; D-alanine-D-glutamate transaminase; D-alanine transaminase; D-amino acid aminotransferase; D-amino acid aminotransferase

Systematic name: D-alanine:2-oxoglutarate aminotransferase

Comments: A pyridoxal-phosphate protein. The enzyme from thermophilic Bacillus species acts on many D-amino acids with D-alanine and D-2-aminobutyrate as the best amino donors. It can similarly use any of several 2-oxo acids as amino acceptor, with 2-oxoglutarate and 2-oxobutyrate among the best. The enzyme from some other sources has a broader specificity [6].

Links to other databases: BRENDA, EXPASY, GTD, KEGG, ERGO, PDB, CAS registry number: 37277-85-3

References:

1. Thorne, C.B., Gómez, C.G. and Housewright, R.D. Transamination of D-amino acids by Bacillus subtilis. J. Bacteriol. 69 (1955) 357-362. [PMID: 14367287]

2. Thorne, C.B. and Molnar, D.M. D-Amino acid transamination in Bacillus anthracis. J. Bacteriol. 70 (1955) 420-426. [PMID: 13263311]

3. Martinez-Carrion, M. and Jenkins, W.T. D-Alanine-D-glutamate transaminase. I. Purification and characterization. J. Biol. Chem. 240 (1965) 3538-3546. [PMID: 4953710]

4. Ozawa, T., Fukuda, M. and Sasaoka, K. Occurrence of D-amino acid aminotransferase in pea seedlings. Biochem. Biophys. Res. Commun. 52 (1973) 998-1002. [PMID: 4710577]

5. Yonaha, K., Misono, H., Yamamoto, T. and Soda, K. D-Amino acid aminotransferase of Bacillus sphaericus. Enzymologic and spectrometric properties. J. Biol. Chem. 250 (1975) 6983-6989. [PMID: 1158891]

6. Tanizawa, K., Masu, Y., Asano, S., Tanaka, H. and Soda, K. Thermostable D-amino acid aminotransferase from a thermophilic Bacillus species. Purification, characterization, and active site sequence determination. J. Biol. Chem. 264 (1989) 2445-2449. [PMID: 2914916]

7. Fotheringham, I.G., Bledig, S.A. and Taylor, P.P. Characterization of the genes encoding D-amino acid transaminase and glutamate racemase, two D-glutamate biosynthetic enzymes of Bacillus sphaericus ATCC 10208. J. Bacteriol. 180 (1998) 4319-4323. [PMID: 9696787]

8. van Ophem, P.W., Erickson, S.D., Martinez del Pozo, A., Haller, I., Chait, B.T., Yoshimura, T., Soda, K., Ringe, D., Petsko, G. and Manning, J.M. Substrate inhibition of D-amino acid transaminase and protection by salts and by reduced nicotinamide adenine dinucleotide: isolation and initial characterization of a pyridoxo intermediate related to inactivation. Biochemistry 37 (1998) 2879-2888. [PMID: 9485439]

9. Sugio, S., Petsko, G.A., Manning, J.M., Soda, K. and Ringe, D. Crystal structure of a D-amino acid aminotransferase: how the protein controls stereoselectivity. Biochemistry 34 (1995) 9661-9669. [PMID: 7626635]

[EC 2.6.1.21 created 1972 (EC 2.6.1.10 created 1961, incorporated 1972), modified 2005]

EC 3.5.1.93

Common name: glutaryl-7-aminocephalosporanic-acid acylase

Reaction: (7R)-7-(4-carboxybutanamido)cephalosporanate + H2O = (7R)-7-aminocephalosporanate + glutarate

For diagram click here.

Other name(s): 7β-(4-carboxybutanamido)cephalosporanic acid acylase; cephalosporin C acylase; glutaryl-7-ACA acylase; CA; GCA; GA; cephalosporin acylase; glutaryl-7-aminocephalosporanic acid acylase; GL-7-ACA acylase

Systematic name: (7R)-7-(4-carboxybutanamido)cephalosporanate amidohydrolase

Comments: Forms 7-aminocephalosporanic acid, a key intermediate in the synthesis of cephem antibiotics. It reacts only weakly with cephalosporin C.

References:

1. Ishii, Y., Saito, Y., Fujimura, T., Sasaki, H., Noguchi, Y., Yamada, H., Niwa, M. and Shimomura, K. High-level production, chemical modification and site-directed mutagenesis of a cephalosporin C acylase from Pseudomonas strain N176. Eur. J. Biochem. 230 (1995) 773-778. [PMID: 7607251]

2. Kinoshita, T., Tada, T., Saito, Y., Ishii, Y., Sato, A. and Murata, M. Crystallization and preliminary X-ray analysis of cephalosporin C acylase from Pseudomonas sp. strain N176. Acta Crystallogr. D Biol. Crystallogr. 56 (2000) 458-459. [PMID: 10739919]

3. Monti, D., Carrea, G., Riva, S., Baldaro, E. and Frare, G. Characterization of an industrial biocatalyst: immobilized glutaryl-7-ACA acylase. Biotechnol. Bioeng. 70 (2000) 239-244. [PMID: 10972935]

4. Kwon, T.H., Rhee, S., Lee, Y.S., Park, S.S. and Kim, K.H. Crystallization and preliminary X-ray diffraction analysis of glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas sp. GK16. J. Struct. Biol. 131 (2000) 79-81. [PMID: 10945972]

5. Kim, Y., Yoon, K.-H., Khang, Y., Turley, S. and Hol, W.G.J. The 2.0 Å crystal structure of cephalosporin acylase. Structure Fold Des. 8 (2000) 1059-1068. [PMID: 11080627]

6. Huang, X., Zeng, R., Ding, X., Mao, X., Ding, Y., Rao, Z., Xie, Y., Jiang, W. and Zhao, G. Affinity alkylation of the Trp-B4 residue of the β-subunit of the glutaryl 7-aminocephalosporanic acid acylase of Pseudomonas sp. 130. J. Biol. Chem. 277 (2002) 10256-10264. [PMID: 11782466]

7. Kim, J.K., Yang, I.S., Rhee, S., Dauter, Z., Lee, Y.S., Park, S.S. and Kim, K.H. Crystal structures of glutaryl 7-aminocephalosporanic acid acylase: insight into autoproteolytic activation. Biochemistry 42 (2003) 4084-4093. [PMID: 12680762]

[EC 3.5.1.93 created 2005]

[EC 3.13.1.2 Deleted entry: 5-deoxyribos-5-ylhomocysteinase. The activity is most probably attributable to EC 4.4.1.21, S-ribosylhomocysteine lyase. (EC 3.13.1.2 created 1972 as EC 3.3.1.3, transferred 2001 to EC 3.2.1.148, transferred 2004 to EC 3.13.1.2, deleted 2005)]

EC 4.1.1.85

Common name: 3-dehydro-L-gulonate-6-phosphate decarboxylase

Reaction: 3-dehydro-L-gulonate 6-phosphate + H+ = L-xylulose 5-phosphate + CO2

For diagram click here.

Other name(s): 3-keto-L-gulonate 6-phosphate decarboxylase; UlaD; SgaH; SgbH; KGPDC

Systematic name: 3-dehydro-L-gulonate-6-phosphate carboxy-lyase

Comments: Requires Mg2+. Along with EC 5.1.3.22, L-ribulose-5-phosphate 3-epimerase, this enzyme is involved in a pathway for the utilization of L-ascorbate by Escherichia coli.

References:

1. Yew, W.S. and Gerlt, J.A. Utilization of L-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. J. Bacteriol. 184 (2002) 302-306. [PMID: 11741871]

2. Wise, E., Yew, W.S., Babbitt, P.C., Gerlt, J.A. and Rayment, I. Homologous (α/β)8-barrel enzymes that catalyze unrelated reactions: orotidine 5'-monophosphate decarboxylase and 3-keto-L-gulonate 6-phosphate decarboxylase. Biochemistry 41 (2002) 3861-3869. [PMID: 11900527]

[EC 4.1.1.85 created 2005]

*EC 5.1.3.4

Common name: L-ribulose-5-phosphate 4-epimerase

Reaction: L-ribulose 5-phosphate = D-xylulose 5-phosphate

For diagram click here.

Other name(s): phosphoribulose isomerase; ribulose phosphate 4-epimerase; L-ribulose-phosphate 4-epimerase; L-ribulose 5-phosphate 4-epimerase; AraD; L-Ru5P

Systematic name: L-ribulose-5-phosphate 4-epimerase

Comments: Requires a divalent cation for activity.

Links to other databases: BRENDA, EXPASY, GTD, KEGG, ERGO, PDB, CAS registry number: 9024-19-5

References:

1. Burma, D.P. and Horecker, B.L. IV. L-Ribulose-5-phosphate 4-epimerase. Pentose formation by Lactobacillus plantarum. J. Biol. Chem. 231 (1958) 1053-1064. [PMID: 13539036]

2. Deupree, J.D. and Wood, W.A. L-Ribulose 5-phosphate 4-epimerase of Aerobacter aerogenes. Evidence for nicotinamide adenine dinucleotide-independent 4-epimerization by the crystalline enzyme. J. Biol. Chem. 245 (1970) 3988-3995. [PMID: 4395381]

3. Lee, N., Patrick, J.W. and Masson, M. Crystalline L-ribulose 5-phosphate 4-epimerase from Escherichia coli. J. Biol. Chem. 243 (1968) 4700-4705. [PMID: 4879898]

4. Wolin, M.J., Simpson, F.J. and Wood, W.A. Degradation of L-arabinose by Aerobacter aerogenes. III. Identification and properties of L-ribulose-5-phosphate 4-epimerase. J. Biol. Chem. 232 (1958) 559-575. [PMID: 13549442]

5. Andersson, A., Schneider, G. and Lindqvist, Y. Purification and preliminary X-ray crystallographic studies of recombinant L-ribulose-5-phosphate 4-epimerase from Escherichia coli. Protein Sci. 4 (1995) 1648-1650. [PMID: 8520491]

6. Lee, L.V., Poyner, R.R., Vu, M.V. and Cleland, W.W. Role of metal ions in the reaction catalyzed by L-ribulose-5-phosphate 4-epimerase. Biochemistry 39 (2000) 4821-4830. [PMID: 10769139]

7. Samuel, J., Luo, Y., Morgan, P.M., Strynadka, N.C. and Tanner, M.E. Catalysis and binding in L-ribulose-5-phosphate 4-epimerase: a comparison with L-fuculose-1-phosphate aldolase. Biochemistry 40 (2001) 14772-14780. [PMID: 11732896]

[EC 5.1.3.4 created 1965, modified 2005]

EC 5.1.3.22

Common name: L-ribulose-5-phosphate 3-epimerase

Reaction: L-ribulose 5-phosphate = L-xylulose 5-phosphate

For diagram click here.

Other name(s): L-xylulose 5-phosphate 3-epimerase; UlaE; SgaU

Systematic name: L-ribulose-5-phosphate 3-epimerase

Comments: Along with EC 4.1.1.83, 3-dehydro-L-gulonate-6-phosphate decarboxylase, this enzyme is involved in a pathway for the utilization of L-ascorbate by Escherichia coli.

References:

1. Yew, W.S. and Gerlt, J.A. Utilization of L-ascorbate by Escherichia coli K-12: assignments of functions to products of the yif-sga and yia-sgb operons. J. Bacteriol. 184 (2002) 302-306. [PMID: 11741871]

[EC 5.1.3.22 created 2005]

EC 5.3.99.8

Common name: capsanthin/capsorubin synthase

Reaction: (1) violaxanthin = capsorubin

(2) antheraxanthin = capsanthin

For diagram click here (mechanism).

Other name(s): CCS; ketoxanthophyll synthase; capsanthin-capsorubin synthase

Systematic name: violaxanthin—capsorubin isomerase (ketone-forming)

Comments: This multifunctional enzyme is induced during chromoplast differentiation in plants [1]. Isomerization of the epoxide ring of violaxanthin gives the cyclopentyl-ketone of capsorubin or capsanthin.

References:

1. Bouvier, F., Hugueney, P., d'Harlingue, A., Kuntz, M. and Camara, B. Xanthophyll biosynthesis in chromoplasts: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid. Plant J. 6 (1994) 45-54. [PMID: 7920703]

2. Lefebvre, V., Kuntz, M., Camara, B. and Palloix, A. The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Mol. Biol. 36 (1998) 785-789. [PMID: 9526511]

3. Xu, C.J., Chen, D.M. and Zhang, S.L. [Molecular cloning of full length capsanthin/capsorubin synthase homologous gene from orange (Citrus sinensis).] Shi Yan Sheng Wu Xue Bao 34 (2001) 147-150. [PMID: 12549109] [Article in Chinese]

[EC 5.3.99.8 created 2005]

EC 5.3.99.9

Common name: neoxanthin synthase

Reaction: violaxanthin = neoxanthin

For diagram click here (mechanism).

Other name(s): NSY

Systematic name: violaxanthin—neoxanthin isomerase (epoxide-opening)

Comments: The opening of the epoxide ring of violaxanthin generates a chiral allene. Neoxanthin is a precursor of the plant hormone abscisic acid and the last product of carotenoid synthesis in green plants [2].

References:

1. Al-Babili, S., Hugueney, P., Schledz, M., Welsch, R., Frohnmeyer, H., Laule, O. and Beyer, P. Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum. FEBS Lett. 485 (2000) 168-172. [PMID: 11094161]

2. Bouvier, F., d'Harlingue, A., Backhaus, R.A., Kumagai, M.H. and Camara, B. Identification of neoxanthin synthase as a carotenoid cyclase paralog. Eur. J. Biochem. 267 (2000) 6346-6352. [PMID: 11029576]

[EC 5.3.99.9 created 2005]


Return to list of new enzymes in supplement 11
Return to Enzymes Home Page.