An asterisk before 'EC' indicates that this is an amendment to an existing enzyme rather than a new enzyme entry.
Common name: xanthoxin dehydrogenase
Reaction: xanthoxin + NAD+ = abscisic aldehyde + NADH + H+
For diagram click here (mechanism).
Other name(s): xanthoxin oxidase; ABA2
Systematic name: xanthoxin:NAD+ oxidoreductase
Comments: Requires a molybdenum cofactor for activity. NADP+ cannot replace NAD+ and short-chain alcohols such as ethanol, isopropanol, butanol and cyclohexanol cannot replace xanthoxin as substrate [3]. Involved in the abscisic-acid biosynthesis pathway in plants, along with EC 1.2.3.14 (abscisic aldehyde oxidase), EC 1.13.11.51 (9-cis-epoxycarotenoid dioxygenase) and EC 1.14.13.93 [(+)-abscisic acid 8'-hydroxylase]. Abscisic acid is a sesquiterpenoid plant hormone that is involved in the control of a wide range of essential physiological processes, including seed development, germination and responses to stress [3].
References:
1. Sindhu, R.K. and Walton, D.C. Xanthoxin metabolism in cell-free preparations from wild type and wilty mutants of tomato. Plant Physiol. 88 (1988) 178-182.
2. Schwartz, S.H., Leon-Kloosterziel, K.M., Koornneef, M. and Zeevaart, J.A. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol. 114 (1997) 161-166. [PMID: 9159947]
3. González-Guzmán, M., Apostolova, N., Bellés, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R. and Rodríguez, P.L. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell. 14 (2002) 1833-1846. [PMID: 12172025]
Common name: abscisic-aldehyde oxidase
Reaction: abscisic aldehyde + H2O + O2 = abscisate + H2O2
For diagram click here.
Other name(s): abscisic aldehyde oxidase; AAO3; AOd
Systematic name: abscisic-aldehyde:oxygen oxidoreductase
Comments: Acts on both (+)- and (-)-abscisic aldehyde. Involved in the abscisic-acid biosynthesis pathway in plants, along with EC 1.1.1.288, (xanthoxin dehydrogenase), EC 1.13.11.51 (9-cis-epoxycarotenoid dioxygenase) and EC 1.14.13.93 [(+)-abscisic acid 8'-hydroxylase]. While abscisic aldehyde is the best substrate, the enzyme also acts with indole-3-aldehyde, 1-naphthaldehyde and benzaldehyde as substrates, but more slowly [3].
References:
1. Sagi, M., Fluhr, R. and Lips, S.H. Aldehyde oxidase and xanthin dehydrogenase in a flacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol. 120 (1999) 571-577. [PMID: 10364409]
2. Seo, M., Peeters, A.J., Koiwai, H., Oritani, T., Marion-Poll, A., Zeevaart, J.A., Koornneef, M., Kamiya, Y. and Koshiba, T. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl. Acad. Sci. USA 97 (2000) 12908-12913. [PMID: 11050171]
3. Seo, M., Koiwai, H., Akaba, S., Komano, T., Oritani, T., Kamiya, Y. and Koshiba, T. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J. 23 (2000) 481-488. [PMID: 10972874]
[EC 1.3.3.2 Transferred entry: now EC 1.14.21.6, lathosterol oxidase. NAD(P)H had not been included previously, so enzyme had to be reclassified (EC 1.3.3.2 created 1972, deleted 2005)]
Common name: all-trans-retinol 13,14-reductase
Reaction: all-trans-13,14-dihydroretinol + acceptor = all-trans-retinol + reduced acceptor
Other name(s): retinol saturase; RetSat; (13,14)-all-trans-retinol saturase; all-trans-retinol:all-trans-13,14-dihydroretinol saturase
Systematic name: all-trans-13,14-dihydroretinol:acceptor 13,14-oxidoreductase
Comments: The reaction is only known to occur in the opposite direction to that given above, with the enzyme being specific for all-trans-retinol as substrate. Neither all-trans-retinoic acid nor 9-cis, 11-cis or 13-cis-retinol isomers are substrates. May play a role in the metabolism of vitamin A.
References:
1. Moise, A.R., Kuksa, V., Imanishi, Y. and Palczewski, K. Identification of all-trans-retinol:all-trans-13,14-dihydroretinol saturase. J. Biol. Chem. 279 (2004) 50230-50242. [PMID: 15358783]
Common name: CoA-disulfide reductase
Reaction: 2 CoA + NAD(P)+ = CoA-disulfide + NAD(P)H + H+
Other name(s): CoA-disulfide reductase (NADH2); NADH2:CoA-disulfide oxidoreductase; CoA:NAD+ oxidoreductase; CoADR; coenzyme A disulfide reductase
Systematic name: CoA:NAD(P)+ oxidoreductase
Comments: A flavoprotein. Not identical with EC 1.8.1.6 (cystine reductase), EC 1.8.1.7 (glutathione-disulfide reductase) or EC 1.8.1.13 (bis-γ-glutamylcystine reductase). While the enzyme from Staphylococcus aureus has a strong preference for NADPH [3], that from the thermophilic Archaea Pyrococcus horikoshii can use both NADH and NADPH efficiently [4].
Links to other databases: BRENDA, EXPASY, KEGG, ERGO, CAS registry number: 206770-55-0
References:
1. Setlow, B. and Setlow, P. Levels of acetyl coenzyme A, reduced and oxidized coenzyme A, and coenzyme A in disulfide linkage to protein in dormant and germinated spores and growing and sporulating cells of Bacillus megaterium. J. Bacteriol. 132 (1977) 444-452. [PMID: 410791]
2. delCardayré, S.B., Stock, K.P., Newton, G.L., Fahey, R.C. and Davies, J.E. Coenzyme A disulfide reductase, the primary low molecular weight disulfide reductase from Staphylococcus aureus. Purification and characterization of the native enzyme. J. Biol. Chem. 273 (1998) 5744-5751. [PMID: 9488707]
3. Luba, J., Charrier, V. and Claiborne, A. Coenzyme A-disulfide reductase from Staphylococcus aureus: evidence for asymmetric behavior on interaction with pyridine nucleotides. Biochemistry 38 (1999) 2725-2737. [PMID: 10052943]
4. Harris, D.R., Ward, D.E., Feasel, J.M., Lancaster, K.M., Murphy, R.D., Mallet, T.C. and Crane, E.J., 3rd. Discovery and characterization of a coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles. FEBS J. 272 (2005) 1189-1200. [PMID: 15720393]
Common name: 9-cis-epoxycarotenoid dioxygenase
Reaction: (1) a 9-cis-epoxycarotenoid + O2 = 2-cis,4-trans-xanthoxin + a 12'-apo-carotenal
(2) 9-cis-violaxanthin + O2 = 2-cis,4-trans-xanthoxin + (3S,5R,6S)-5,6-epoxy-3-hydroxy-5,6-dihydro-12'-apo-β-caroten-12'-al
(3) 9'-cis-neoxanthin + O2 = 2-cis,4-trans-xanthoxin + (3S,5R,6R)-5,6-dihydroxy-6,7-didehydro-5,6-dihydro-12'-apo-β-caroten-12'-al
For diagram click here.
Other name(s): nine-cis-epoxycarotenoid dioxygenase; NCED; AtNCED3; PvNCED1; VP14
Systematic name: 9-cis-epoxycarotenoid 11,12-dioxygenase
Comments: Requires iron(II). Acts on 9-cis-violaxanthin and 9'-cis-neoxanthin but not on the all-trans isomers [2,3]. In vitro, it will cleave 9-cis-zeaxanthin. Catalyses the first step of abscisic-acid biosynthesis from carotenoids in chloroplasts, in response to water stress. The other enzymes involved in the abscisic-acid biosynthesis pathway are EC 1.1.1.288 (xanthoxin dehydrogenase), EC 1.2.3.14 (abscisic aldehyde oxidase) and EC 1.14.13.93 [(+)-abscisic acid 8'-hydroxylase].
References:
1. Schwartz, S.H., Tan, B.C., Gage, D.A., Zeevaart, J.A. and McCarty, D.R. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276 (1997) 1872-1874. [PMID: 9188535]
2. Tan, B.C., Schwartz, S.H., Zeevaart, J.A. and McCarty, D.R. Genetic control of abscisic acid biosynthesis in maize. Proc. Natl. Acad. Sci. USA 94 (1997) 12235-12240. [PMID: 9342392]
3. Qin, X. and Zeevaart, J.A. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc. Natl. Acad. Sci. USA 96 (1999) 15354-15361. [PMID: 10611388]
4. Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A. and Taylor, I.B. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J. 23 (2000) 363-374. [PMID: 10929129]
5. Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27 (2001) 325-333. [PMID: 11532178]
6. Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Erratum. Plant J. 30 (2002) 611. [PMID: 11532178]
Common name: deacetoxycephalosporin-C hydroxylase
Reaction: deacetoxycephalosporin C + 2-oxoglutarate + O2 = deacetylcephalosporin C + succinate + CO2
For diagram click here.
Other name(s): deacetylcephalosporin C synthase; 3'-methylcephem hydroxylase; DACS; DAOC hydroxylase; deacetoxycephalosporin C hydroxylase
Systematic name: deacetoxycephalosporin-C,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires iron(II). The enzyme can also use 3-exomethylenecephalosporin C as a substrate to form deacetoxycephalosporin C, although more slowly [2]. In Acremonium chrysogenum, the enzyme forms part of a bifunctional protein along with EC 1.14.20.1, deactoxycephalosporin-C synthase. It is a separate enzyme in Streptomyces clavuligerus.
References:
1. Dotzlaf, J.E. and Yeh, W.K. Copurification and characterization of deacetoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium. J. Bacteriol. 169 (1987) 1611-1618. [PMID: 3558321]
2. Baker, B.J., Dotzlaf, J.E. and Yeh, W.K. Deacetoxycephalosporin C hydroxylase of Streptomyces clavuligerus. Purification, characterization, bifunctionality, and evolutionary implication. J. Biol. Chem. 266 (1991) 5087-5093. [PMID: 2002049]
3. Coque, J.J., Enguita, F.J., Cardoza, R.E., Martin, J.F. and Liras, P. Characterization of the cefF gene of Nocardia lactamdurans encoding a 3'-methylcephem hydroxylase different from the 7-cephem hydroxylase. Appl. Microbiol. Biotechnol. 44 (1996) 605-609. [PMID: 8703431]
4. Ghag, S.K., Brems, D.N., Hassell, T.C. and Yeh, W.K. Refolding and purification of Cephalosporium acremonium deacetoxycephalosporin C synthetase/hydroxylase from granules of recombinant Escherichia coli. Biotechnol. Appl. Biochem. 24 (1996) 109-119. [PMID: 8865604]
5. Lloyd, M.D., Lipscomb, S.J., Hewitson, K.S., Hensgens, C.M., Baldwin, J.E. and Schofield, C.J. Controlling the substrate selectivity of deacetoxycephalosporin/deacetylcephalosporin C synthase. J. Biol. Chem. 279 (2004) 15420-15426. [PMID: 14734549]
6. Wu, X.B., Fan, K.Q., Wang, Q.H. and Yang, K.Q. C-terminus mutations of Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase with improved activity toward penicillin analogs. FEMS Microbiol. Lett. 246 (2005) 103-110. [PMID: 15869968]
7. Martín, J.F., Gutiérrez, S., Fernández, F.J., Velasco, J., Fierro, F., Marcos, A.T. and Kosalkova, K. Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins. Antonie Van Leeuwenhoek 65 (1994) 227-43. [PMID: 7847890]
Common name: (+)-abscisic acid 8'-hydroxylase
Reaction: (+)-abscisate + NADPH + H+ + O2 = 8'-hydroxyabscisate + NADP+ + H2O
For diagram click here.
Other name(s): (+)-ABA 8'-hydroxylase; ABA 8'-hydroxylase
Systematic name: abscisate,NADPH:oxygen oxidoreductase (8'-hydroxylating)
Comments: A heme-thiolate protein (P-450). Catalyses the first step in the oxidative degradation of abscisic acid and is considered to be the pivotal enzyme in controlling the rate of degradation of this plant hormone [1]. CO inhibits the reaction, but its effects can be reversed by the presence of blue light [1]. The 8'-hydroxyabscisate formed can be converted into (-)-phaseic acid, most probably spontaneously. Other enzymes involved in the abscisic-acid biosynthesis pathway are EC 1.1.1.288 (xanthoxin dehydrogenase), EC 1.2.3.14 (abscisic aldehyde oxidase) and EC 1.13.11.51 (9-cis-epoxycarotenoid dioxygenase).
References:
1. Cutler, A.J., Squires, T.M., Loewen, M.K. and Balsevich, J.J. Induction of (+)-abscisic acid 8' hydroxylase by (+)-abscisic acid in cultured maize cells. J. Exp. Bot. 48 (1997) 1787-1795.
2. Krochko, J.E., Abrams, G.D., Loewen, M.K., Abrams, S.R. and Cutler, A.J. (+)-Abscisic acid 8'-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol. 118 (1998) 849-860. [PMID: 9808729]
Common name: lathosterol oxidase
Reaction: 5α-cholest-7-en-3β-ol + NAD(P)H + H+ + O2 = cholesta-5,7-dien-3β-ol + NAD(P)+ + 2 H2O
For diagram click here.
Glossary: lathosterol = 5α-cholest-7-en-3β-ol
7-dehydrocholesterol = cholesta-5,7-dien-3β-ol
Other name(s): δ7-sterol δ5-dehydrogenase; δ7-sterol 5-desaturase; δ7-sterol-C5(6)-desaturase; 5-DES
Systematic name: 5α-cholest-7-en-3β-ol, NAD(P)H:oxygen 5-oxidoreductase
Comments: This enzyme catalyses the introduction of a C5 double bond into the B ring of δ7-sterols to yield the corresponding δ5,7-sterols in mammals, yeast and plants [4]. Forms part of the plant sterol biosynthesis pathway.
Links to other databases: BRENDA, EXPASY, KEGG, ERGO, CAS registry number: 37255-37-1
References:
1. Dempsey, M.E., Seaton, J.D., Schroepfer, G.J. and Trockman, R.W. The intermediary role of δ5,7-cholestadien-3β-ol in cholesterol biosynthesis. J. Biol. Chem. 239 (1964) 1381-1387. [PMID: 14189869]
2. Nishino, H., Nakaya, J., Nishi, S., Kurosawa, T. and Ishibashi, T. Temperature-induced differential kinetic properties between an initial burst and the following steady state in membrane-bound enzymes: studies on lathosterol 5-desaturase. Arch. Biochem. Biophys. 339 (1997) 298-304. [PMID: 9056262]
3. Taton, M. and Rahier, A. Plant sterol biosynthesis: identification and characterization of higher plant δ7-sterol C5(6)-desaturase. Arch. Biochem. Biophys. 325 (1996) 279-288. [PMID: 8561508]
4. Taton, M., Husselstein, T., Benveniste, P. and Rahier, A. Role of highly conserved residues in the reaction catalyzed by recombinant δ7-sterol-C5(6)-desaturase studied by site-directed mutagenesis. Biochemistry 39 (2000) 701-711. [PMID: 10651635]
Common name: deacetylcephalosporin-C acetyltransferase
Reaction: acetyl-CoA + deacetylcephalosporin C = CoA + cephalosporin C
For diagram click here.
Other name(s): acetyl-CoA:deacetylcephalosporin-C acetyltransferase; DAC acetyltransferase; cefG; deacetylcephalosporin C acetyltransferase; acetyl coenzyme A:DAC acetyltransferase; acetyl-CoA:DAC acetyltransferase; CPC acetylhydrolase; acetyl-CoA:DAC O-acetyltransferase; DAC-AT
Systematic name: acetyl-CoA:deacetylcephalosporin-C O-acetyltransferase
Comments: This enzyme catalyses the final step in the biosynthesis of cephalosporin C.
References:
1. Matsuyama, K., Matsumoto, H., Matsuda, A., Sugiura, H., Komatsu, K. and Ichikawa, S. Purification of acetyl coenzyme A: deacetylacephalosporin C O-acetyltransferase from Acremonium chrysogenum. Biosci. Biotechnol. Biochem. 56 (1992) 1410-1412. [PMID: 1368946]
2. Gutiérrez, S., Velasco, J., Fernandez, F.J. and Martín, J.F. The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase. J. Bacteriol. 174 (1992) 3056-3064. [PMID: 1569032]
3. Matsuda, A., Sugiura, H., Matsuyama, K., Matsumoto, H., Ichikawa, S. and Komatsu, K. Cloning and disruption of the cefG gene encoding acetyl coenzyme A: deacetylcephalosporin C O-acetyltransferase from Acremonium chrysogenum. Biochem. Biophys. Res. Commun. 186 (1992) 40-46. [PMID: 1632779]
4. Gutiérrez, S., Velasco, J., Marcos, A.T., Fernández, F.J., Fierro, F., Barredo, J.L., Díez, B. and Martín, J.F. Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl. Microbiol. Biotechnol. 48 (1997) 606-614. [PMID: 9421924]
5. Velasco, J., Gutierrez, S., Campoy, S. and Martin, J.F. Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits. Biochem. J. 337 (1999) 379-385. [PMID: 9895280]
6. Martín, J.F., Gutiérrez, S., Fernández, F.J., Velasco, J., Fierro, F., Marcos, A.T. and Kosalkova, K. Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins. Antonie Van Leeuwenhoek 65 (1994) 227-43. [PMID: 7847890]
Common name: D-amino-acid transaminase
Reaction: D-alanine + 2-oxoglutarate = pyruvate + D-glutamate
Other name(s): D-aspartate transaminase; D-alanine aminotransferase; D-aspartic aminotransferase; D-alanine-D-glutamate transaminase; D-alanine transaminase; D-amino acid aminotransferase; D-amino acid aminotransferase
Systematic name: D-alanine:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. The enzyme from thermophilic Bacillus species acts on many D-amino acids with D-alanine and D-2-aminobutyrate as the best amino donors. It can similarly use any of several 2-oxo acids as amino acceptor, with 2-oxoglutarate and 2-oxobutyrate among the best. The enzyme from some other sources has a broader specificity [6].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, ERGO, PDB, CAS registry number: 37277-85-3
References:
1. Thorne, C.B., Gómez, C.G. and Housewright, R.D. Transamination of D-amino acids by Bacillus subtilis. J. Bacteriol. 69 (1955) 357-362. [PMID: 14367287]
2. Thorne, C.B. and Molnar, D.M. D-Amino acid transamination in Bacillus anthracis. J. Bacteriol. 70 (1955) 420-426. [PMID: 13263311]
3. Martinez-Carrion, M. and Jenkins, W.T. D-Alanine-D-glutamate transaminase. I. Purification and characterization. J. Biol. Chem. 240 (1965) 3538-3546. [PMID: 4953710]
4. Ozawa, T., Fukuda, M. and Sasaoka, K. Occurrence of D-amino acid aminotransferase in pea seedlings. Biochem. Biophys. Res. Commun. 52 (1973) 998-1002. [PMID: 4710577]
5. Yonaha, K., Misono, H., Yamamoto, T. and Soda, K. D-Amino acid aminotransferase of Bacillus sphaericus. Enzymologic and spectrometric properties. J. Biol. Chem. 250 (1975) 6983-6989. [PMID: 1158891]
6. Tanizawa, K., Masu, Y., Asano, S., Tanaka, H. and Soda, K. Thermostable D-amino acid aminotransferase from a thermophilic Bacillus species. Purification, characterization, and active site sequence determination. J. Biol. Chem. 264 (1989) 2445-2449. [PMID: 2914916]
7. Fotheringham, I.G., Bledig, S.A. and Taylor, P.P. Characterization of the genes encoding D-amino acid transaminase and glutamate racemase, two D-glutamate biosynthetic enzymes of Bacillus sphaericus ATCC 10208. J. Bacteriol. 180 (1998) 4319-4323. [PMID: 9696787]
8. van Ophem, P.W., Erickson, S.D., Martinez del Pozo, A., Haller, I., Chait, B.T., Yoshimura, T., Soda, K., Ringe, D., Petsko, G. and Manning, J.M. Substrate inhibition of D-amino acid transaminase and protection by salts and by reduced nicotinamide adenine dinucleotide: isolation and initial characterization of a pyridoxo intermediate related to inactivation. Biochemistry 37 (1998) 2879-2888. [PMID: 9485439]
9. Sugio, S., Petsko, G.A., Manning, J.M., Soda, K. and Ringe, D. Crystal structure of a D-amino acid aminotransferase: how the protein controls stereoselectivity. Biochemistry 34 (1995) 9661-9669. [PMID: 7626635]
Common name: glutaryl-7-aminocephalosporanic-acid acylase
Reaction: (7R)-7-(4-carboxybutanamido)cephalosporanate + H2O = (7R)-7-aminocephalosporanate + glutarate
For diagram click here.
Other name(s): 7β-(4-carboxybutanamido)cephalosporanic acid acylase; cephalosporin C acylase; glutaryl-7-ACA acylase; CA; GCA; GA; cephalosporin acylase; glutaryl-7-aminocephalosporanic acid acylase; GL-7-ACA acylase
Systematic name: (7R)-7-(4-carboxybutanamido)cephalosporanate amidohydrolase
Comments: Forms 7-aminocephalosporanic acid, a key intermediate in the synthesis of cephem antibiotics. It reacts only weakly with cephalosporin C.
References:
1. Ishii, Y., Saito, Y., Fujimura, T., Sasaki, H., Noguchi, Y., Yamada, H., Niwa, M. and Shimomura, K. High-level production, chemical modification and site-directed mutagenesis of a cephalosporin C acylase from Pseudomonas strain N176. Eur. J. Biochem. 230 (1995) 773-778. [PMID: 7607251]
2. Kinoshita, T., Tada, T., Saito, Y., Ishii, Y., Sato, A. and Murata, M. Crystallization and preliminary X-ray analysis of cephalosporin C acylase from Pseudomonas sp. strain N176. Acta Crystallogr. D Biol. Crystallogr. 56 (2000) 458-459. [PMID: 10739919]
3. Monti, D., Carrea, G., Riva, S., Baldaro, E. and Frare, G. Characterization of an industrial biocatalyst: immobilized glutaryl-7-ACA acylase. Biotechnol. Bioeng. 70 (2000) 239-244. [PMID: 10972935]
4. Kwon, T.H., Rhee, S., Lee, Y.S., Park, S.S. and Kim, K.H. Crystallization and preliminary X-ray diffraction analysis of glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas sp. GK16. J. Struct. Biol. 131 (2000) 79-81. [PMID: 10945972]
5. Kim, Y., Yoon, K.-H., Khang, Y., Turley, S. and Hol, W.G.J. The 2.0 Å crystal structure of cephalosporin acylase. Structure Fold Des. 8 (2000) 1059-1068. [PMID: 11080627]
6. Huang, X., Zeng, R., Ding, X., Mao, X., Ding, Y., Rao, Z., Xie, Y., Jiang, W. and Zhao, G. Affinity alkylation of the Trp-B4 residue of the β-subunit of the glutaryl 7-aminocephalosporanic acid acylase of Pseudomonas sp. 130. J. Biol. Chem. 277 (2002) 10256-10264. [PMID: 11782466]
7. Kim, J.K., Yang, I.S., Rhee, S., Dauter, Z., Lee, Y.S., Park, S.S. and Kim, K.H. Crystal structures of glutaryl 7-aminocephalosporanic acid acylase: insight into autoproteolytic activation. Biochemistry 42 (2003) 4084-4093. [PMID: 12680762]
[EC 3.13.1.2 Deleted entry: 5-deoxyribos-5-ylhomocysteinase. The activity is most probably attributable to EC 4.4.1.21, S-ribosylhomocysteine lyase. (EC 3.13.1.2 created 1972 as EC 3.3.1.3, transferred 2001 to EC 3.2.1.148, transferred 2004 to EC 3.13.1.2, deleted 2005)]
Common name: 3-dehydro-L-gulonate-6-phosphate decarboxylase
Reaction: 3-dehydro-L-gulonate 6-phosphate + H+ = L-xylulose 5-phosphate + CO2
For diagram click here.
Other name(s): 3-keto-L-gulonate 6-phosphate decarboxylase; UlaD; SgaH; SgbH; KGPDC
Systematic name: 3-dehydro-L-gulonate-6-phosphate carboxy-lyase
Comments: Requires Mg2+. Along with EC 5.1.3.22, L-ribulose-5-phosphate 3-epimerase, this enzyme is involved in a pathway for the utilization of L-ascorbate by Escherichia coli.
References:
1. Yew, W.S. and Gerlt, J.A. Utilization of L-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. J. Bacteriol. 184 (2002) 302-306. [PMID: 11741871]
2. Wise, E., Yew, W.S., Babbitt, P.C., Gerlt, J.A. and Rayment, I. Homologous (α/β)8-barrel enzymes that catalyze unrelated reactions: orotidine 5'-monophosphate decarboxylase and 3-keto-L-gulonate 6-phosphate decarboxylase. Biochemistry 41 (2002) 3861-3869. [PMID: 11900527]
Common name: L-ribulose-5-phosphate 4-epimerase
Reaction: L-ribulose 5-phosphate = D-xylulose 5-phosphate
For diagram click here.
Other name(s): phosphoribulose isomerase; ribulose phosphate 4-epimerase; L-ribulose-phosphate 4-epimerase; L-ribulose 5-phosphate 4-epimerase; AraD; L-Ru5P
Systematic name: L-ribulose-5-phosphate 4-epimerase
Comments: Requires a divalent cation for activity.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, ERGO, PDB, CAS registry number: 9024-19-5
References:
1. Burma, D.P. and Horecker, B.L. IV.
2. Deupree, J.D. and Wood, W.A. L-Ribulose 5-phosphate 4-epimerase of Aerobacter aerogenes. Evidence for nicotinamide adenine dinucleotide-independent 4-epimerization by the crystalline enzyme. J. Biol. Chem. 245 (1970) 3988-3995. [PMID: 4395381]
3. Lee, N., Patrick, J.W. and Masson, M. Crystalline L-ribulose 5-phosphate 4-epimerase from Escherichia coli. J. Biol. Chem. 243 (1968) 4700-4705. [PMID: 4879898]
4. Wolin, M.J., Simpson, F.J. and Wood, W.A. Degradation of L-arabinose by Aerobacter aerogenes. III. Identification and properties of L-ribulose-5-phosphate 4-epimerase. J. Biol. Chem. 232 (1958) 559-575. [PMID: 13549442]
5. Andersson, A., Schneider, G. and Lindqvist, Y. Purification and preliminary X-ray crystallographic studies of recombinant L-ribulose-5-phosphate 4-epimerase from Escherichia coli. Protein Sci. 4 (1995) 1648-1650. [PMID: 8520491]
6. Lee, L.V., Poyner, R.R., Vu, M.V. and Cleland, W.W. Role of metal ions in the reaction catalyzed by L-ribulose-5-phosphate 4-epimerase. Biochemistry 39 (2000) 4821-4830. [PMID: 10769139]
7. Samuel, J., Luo, Y., Morgan, P.M., Strynadka, N.C. and Tanner, M.E. Catalysis and binding in L-ribulose-5-phosphate 4-epimerase: a comparison with L-fuculose-1-phosphate aldolase. Biochemistry 40 (2001) 14772-14780. [PMID: 11732896]
Common name: L-ribulose-5-phosphate 3-epimerase
Reaction: L-ribulose 5-phosphate = L-xylulose 5-phosphate
For diagram click here.
Other name(s): L-xylulose 5-phosphate 3-epimerase; UlaE; SgaU
Systematic name: L-ribulose-5-phosphate 3-epimerase
Comments: Along with EC 4.1.1.83, 3-dehydro-L-gulonate-6-phosphate decarboxylase, this enzyme is involved in a pathway for the utilization of L-ascorbate by Escherichia coli.
References:
1. Yew, W.S. and Gerlt, J.A. Utilization of L-ascorbate by Escherichia coli K-12: assignments of functions to products of the yif-sga and yia-sgb operons. J. Bacteriol. 184 (2002) 302-306. [PMID: 11741871]
Common name: capsanthin/capsorubin synthase
Reaction: (1) violaxanthin = capsorubin
(2) antheraxanthin = capsanthin
For diagram click here (mechanism).
Other name(s): CCS; ketoxanthophyll synthase; capsanthin-capsorubin synthase
Systematic name: violaxanthincapsorubin isomerase (ketone-forming)
Comments: This multifunctional enzyme is induced during chromoplast differentiation in plants [1]. Isomerization of the epoxide ring of violaxanthin gives the cyclopentyl-ketone of capsorubin or capsanthin.
References:
1. Bouvier, F., Hugueney, P., d'Harlingue, A., Kuntz, M. and Camara, B. Xanthophyll biosynthesis in chromoplasts: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid. Plant J. 6 (1994) 45-54. [PMID: 7920703]
2. Lefebvre, V., Kuntz, M., Camara, B. and Palloix, A. The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Mol. Biol. 36 (1998) 785-789. [PMID: 9526511]
3. Xu, C.J., Chen, D.M. and Zhang, S.L. [Molecular cloning of full length capsanthin/capsorubin synthase homologous gene from orange (Citrus sinensis).] Shi Yan Sheng Wu Xue Bao 34 (2001) 147-150. [PMID: 12549109] [Article in Chinese]
Common name: neoxanthin synthase
Reaction: violaxanthin = neoxanthin
For diagram click here (mechanism).
Other name(s): NSY
Systematic name: violaxanthinneoxanthin isomerase (epoxide-opening)
Comments: The opening of the epoxide ring of violaxanthin generates a chiral allene. Neoxanthin is a precursor of the plant hormone abscisic acid and the last product of carotenoid synthesis in green plants [2].
References:
1. Al-Babili, S., Hugueney, P., Schledz, M., Welsch, R., Frohnmeyer, H., Laule, O. and Beyer, P. Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum. FEBS Lett. 485 (2000) 168-172. [PMID: 11094161]
2. Bouvier, F., d'Harlingue, A., Backhaus, R.A., Kumagai, M.H. and Camara, B. Identification of neoxanthin synthase as a carotenoid cyclase paralog. Eur. J. Biochem. 267 (2000) 6346-6352. [PMID: 11029576]