An asterisk before 'EC' indicates that this is an amendment to an existing enzyme rather than a new enzyme entry.
Accepted name: nitrous-oxide reductase
Reaction: nitrogen + H2O + 2 cytochrome c = nitrous oxide + 2 reduced cytochrome c
Other name(s): nitrous oxide reductase; N2O reductase; nitrogen:(acceptor) oxidoreductase (N2O-forming)
Systematic name: nitrogen:cytochrome c oxidoreductase (N2O-forming)
Comments: The reaction is observed only in the direction of nitrous oxide reduction. Contains the mixed-valent dinuclear CuA species at the electron entry site of the enzyme, and the tetranuclear Cu-Z centre in the active site. In Paracoccus pantotrophus, the electron donor is cytochrome c552.
References:
1. Coyle, C.L., Zumft, W.G., Kroneck, P.M.H., Körner, H. and Jakob, W. Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina. Purification and properties of a novel multicopper enzyme. Eur. J. Biochem. 153 (1985) 459-467. [PMID: 3000778]
2. Zumft, W.G. and Kroneck, P.M. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by bacteria and archaea. Adv. Microb. Physiol. 52 (2007) 107-227. [PMID: 17027372]
3. Dell'Acqua, S., Pauleta, S.R., Paes de Sousa, P.M., Monzani, E., Casella, L., Moura, J.J. and Moura, I. A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica. J. Biol. Inorg. Chem. 15 (2010) 967-976. [PMID: 20422435]
[EC 1.7.99.6 Transferred entry: nitrous-oxide reductase. Now EC 1.7.2.4, nitrous-oxide reductase (EC 1.7.99.6 created 1989, modified 1999, deleted 2011)]
Accepted name: dimethylsulfoxide reductase
Reaction: dimethyl sulfide + menaquinone + H2O = dimethyl sulfoxide + menaquinol
Other name(s): DMSO reductase
Systematic name: dimethyl sulfide: menaquinone oxidoreductase
Comments: Contains molybdopterin and [4Fe-4S] clusters. Also reduces pyridine N-oxide and trimethylamine N-oxide, with lower activity, to the corresponding amines.
References:
1. Simala-Grant, J.L. and Weiner, J.H. Kinetic analysis and substrate specificity of Escherichia coli dimethyl sulfoxide reductase. Microbiology 142 (1996) 3231-3239. [PMID: 8969520]
2. Daruwala, R. and Meganathan, R. Dimethyl sulfoxide reductase is not required for trimethylamine N-oxide reduction in Escherichia coli. FEMS Microbiol. Lett. 67 (1991) 255-259. [PMID: 1769531]
3. Miguel, L. and Meganthan, R. Electron donors and the quinone involved in dimethyl sulfoxide reduction in Escherichia coli. Curr. Microbiol. 22 (1991) 109-115.
4. Rothery, R.A., Trieber, C.A. and Weiner, J.H. Interactions between the molybdenum cofactor and iron-sulfur clusters of Escherichia coli dimethylsulfoxide reductase. J. Biol. Chem. 274 (1999) 13002-13009. [PMID: 10224050]
[EC 1.13.12.14 Transferred entry: chlorophyllide-a oxygenase. Now EC 1.14.13.122, chlorophyllide-a oxygenase (EC 1.13.12.14 created 2006, deleted 2011)]
Accepted name: chlorophyllide-a oxygenase
Reaction: (1) chlorophyllide a + O2 + NADPH + H+ = 71-hydroxychlorophyllide a + H2O + NADP+
(2) 71-hydroxychlorophyllide a + O2 + NADPH + H+ = chlorophyllide b + 2 H2O + NADP+
Other name(s): chlorophyllide a oxygenase; chlorophyll-b synthase; CAO
Systematic name: chlorophyllide-a:oxygen 7-oxidoreductase
Comments: Chlorophyll b is required for the assembly of stable light-harvesting complexes (LHCs) in the chloroplast of green algae, cyanobacteria and plants [2,3]. Contains a mononuclear iron centre [3]. The enzyme catalyses two successive hydroxylations at the 7-methyl group of chlorophyllide a. The second step yields the aldehyde hydrate, which loses H2O spontaneously to form chlorophyllide b [2]. Chlorophyll a and protochlorophyllide a are not substrates [2].
References:
1. Espineda, C.E., Linford, A.S., Devine, D. and Brusslan, J.A. The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 96 (1999) 10507-10511. [PMID: 10468639]
2. Oster, U., Tanaka, R., Tanaka, A. and Rudiger, W. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J. 21 (2000) 305-310. [PMID: 10758481]
3. Eggink, L.L., LoBrutto, R., Brune, D.C., Brusslan, J., Yamasato, A., Tanaka, A. and Hoober, J.K. Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biol. 4 (2004) 5. [PMID: 15086960]
4. Porra, R.J., Schafer, W., Cmiel, E., Katheder, I. and Scheer, H. The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen. Achievement of high enrichment of the 7-formyl-group oxygen from 18O2 in greening maize leaves. Eur. J. Biochem. 219 (1994) 671-679. [PMID: 8307032]
Accepted name: 13-hydroxylupanine O-tigloyltransferase
Reaction: (E)-2-methylcrotonoyl-CoA + 13-hydroxylupanine = CoA + 13-[(E)-2-methylcrotonoyl]oxylupanine
Glossary: (E)-2-methylcrotonoyl-CoA = tigloyl-CoA = (E)-2-methylbut-2-enoyl-CoA
Other name(s): tigloyl-CoA:13-hydroxylupanine O-tigloyltransferase; 13-hydroxylupanine acyltransferase
Systematic name: (E)-2-methylcrotonoyl-CoA:13-hydroxylupanine O-2-methylcrotonoyltransferase
Comments: Benzoyl-CoA and, more slowly, pentanoyl-CoA, 3-methylbutanoyl-CoA and butanoyl-CoA can act as acyl donors. Involved in the synthesis of lupanine alkaloids.
Links to other databases: BRENDA, EXPASY, KEGG, CAS registry number: 85341-00-0
References:
1. Wink, M. and Hartmann, T. Enzymatic synthesis of quinolizidine alkaloid esters: a tigloyl-CoA:13-hydroxylupanine O-tigloyl transferase from Lupinus albus L. Planta 156 (1982) 560-565.
2. Okada, T.. Hirai, M.Y., Suzuki, H., Yamazaki, M. and Saito, K. Molecular characterization of a novel quinolizidine alkaloid O-tigloyltransferase: cDNA cloning, catalytic activity of recombinant protein and expression analysis in Lupinus plants. Plant Cell Physiol. 46 (2005) 233-244.
3. Suzuki, H., Murakoshi, I. and Saito, K. A novel O-tigloyltransferase for alkaloid biosynthesis in plants. Purification, characterization, and distribution in Lupinus plants. J. Biol. Chem. 269 (1994) 15853-15860. [PMID: 8195240]
[EC 2.4.1.130 Transferred entry: dolichyl-phosphate-mannose—glycolipid α-mannosyltransferase. Now covered by EC 2.4.1.258 (Dol-P-Man:Man5GlcNAc2-PP-Dol α-1,3-mannosyltransferase), EC 2.4.1.259 (Dol-P-Man:Man6GlcNAc2-PP-Dol α-1,2-mannosyltransferase), EC 2.4.1.260 (Dol-P-Man:Man7GlcNAc2-PP-Dol α-1,6-mannosyltransferase) and EC 2.4.1.261 (Dol-P-Man:Man8GlcNAc2-PP-Dol α-1,2-mannosyltransferase). (EC 2.4.1.130 created 1984, deleted 2011)]
Accepted name: GDP-Man:Man3GlcNAc2-PP-Dol α-1,2-mannosyltransferase
Reaction: 2 GDP-D-mannose + D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol = D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol
Other name(s): ALG11; ALG11 mannosyltransferase; LEW3 (gene name); At2G40190 (gene name); gmd3 (gene name); galactomannan deficiency protein 3; GDP-mannose:glycolipid 1,2-α-D-mannosyltransferase; glycolipid 2-α-mannosyltransferase
Systematic name: GDP-D-mannose:D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,2-mannosyltransferase
Comments: The biosynthesis of asparagine-linked glycoproteins (N-linked protein glycosylation) utilizes a dolichyl diphosphate-linked glycosyl donor, which is assembled by the series of membrane-bound glycosyltransferases that comprise the dolichol pathway. ALG11 mannosyltransferase from Saccharomyces cerevisiae carries out two sequential steps in the formation of the lipid-linked core oligosaccharide, adding two mannose residues in α(1→2) linkages to the nascent oligosaccharide.
Links to other databases: BRENDA, EXPASY, KEGG, CAS registry number: 74506-43-7
References:
1. O'Reilly, M.K., Zhang, G. and Imperiali, B. In vitro evidence for the dual function of Alg2 and Alg11: essential mannosyltransferases in N-linked glycoprotein biosynthesis. Biochemistry 45 (2006) 9593-9603. [PMID: 16878994]
2. Absmanner, B., Schmeiser, V., Kampf, M. and Lehle, L. Biochemical characterization, membrane association and identification of amino acids essential for the function of Alg11 from Saccharomyces cerevisiae, an α1,2-mannosyltransferase catalysing two sequential glycosylation steps in the formation of the lipid-linked core oligosaccharide. Biochem. J. 426 (2010) 205-217. [PMID: 19929855]
3. Schutzbach, J.S., Springfield, J.D. and Jensen, J.W. The biosynthesis of oligosaccharide-lipids. Formation of an α-1,2-mannosyl-mannose linkage. J. Biol. Chem. 255 (1980) 4170-4175. [PMID: 6154707]
Accepted name: GDP-Man:Man1GlcNAc2-PP-dolichol α-1,3-mannosyltransferase
Reaction: GDP-D-mannose + D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol = GDP + D-Man-α-(1→3)-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol
Other name(s): Alg2 mannosyltransferase (ambiguous); ALG2 (gene name, ambiguous); glycolipid 3-α-mannosyltransferase; GDP-mannose:glycolipid 1,3-α-D-mannosyltransferase
Systematic name: GDP-D-mannose:D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol 3-α-mannosyltransferase
Comments: The biosynthesis of asparagine-linked glycoproteins utilizes a dolichyl diphosphate-linked glycosyl donor, which is assembled by the series of membrane-bound glycosyltransferases that comprise the dolichol pathway. Alg2 mannosyltransferase from Saccharomyces cerevisiae carries out an α1,3-mannosylation of D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol, followed by an α1,6-mannosylation (cf. EC 2.4.1.257), to form the first branched pentasaccharide intermediate of the dolichol pathway [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, CAS registry number: 81181-76-2
References:
1. Kampf, M., Absmanner, B., Schwarz, M. and Lehle, L. Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional α1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. J. Biol. Chem. 284 (2009) 11900-11912. [PMID: 19282279]
2. O'Reilly, M.K., Zhang, G. and Imperiali, B. In vitro evidence for the dual function of Alg2 and Alg11: essential mannosyltransferases in N-linked glycoprotein biosynthesis. Biochemistry 45 (2006) 9593-9603. [PMID: 16878994]
Accepted name: luteolin-7-O-diglucuronide 4'-O-glucuronosyltransferase
Reaction: UDP-glucuronate + luteolin 7-O-[β-D-glucuronosyl-(1→2)-β-D-glucuronide] = UDP + luteolin 7-O-[β-D-glucuronosyl-(1→2)-β-D-glucuronide]-4'-O-β-D-glucuronide
For diagram of reaction click here
Other name(s): uridine diphosphoglucuronate-luteolin 7-O-diglucuronide glucuronosyltransferase; UDP-glucuronate:luteolin 7-O-diglucuronide-glucuronosyltransferase; UDPglucuronate:luteolin 7-O-diglucuronide-4'-O-glucuronosyl-transferase; LDT
Systematic name: UDP-glucuronate:luteolin-7-O-β-D-diglucuronide 4'-O-glucuronosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, CAS registry number: 115490-50-1
References:
1. Schulz, M. and Weissenböck, G. 3 specific UDP-glucuronate-flavone-glucuronosyl-transferases from primary leaves of Secale cereale. Phytochemistry 27 (1988) 1261-1267.
Accepted name: Dol-P-Glc:Glc2Man9GlcNAc2-PP-Dol α1,2-glucosyltransferase
Reaction: dolichyl β-D-glucosyl phosphate + D-Glc-α-(1→3)-D-Glc-α-(1→3)-D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol = D-Glc-α-(1→2)-D-Glc-α-(1→3)-D-Glc-α-(1→3)-D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol + dolichyl phosphate
Other name(s): ALG10
Systematic name: dolichyl β-D-glucosyl phosphate:D-Glc-α-(1→3)-D-Glc-α-(1→3)-D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,2-glucosyltransferase
Comments: This enzyme performs the final step in the synthesis of the lipid-linked oligosaccharide attaching D-glucose in an α-1,2-linkage to the outermost D-glucose in the long branch.
References:
1. Burda, P. and Aebi, M. The ALG10 locus of Saccharomyces cerevisiae encodes the α-1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation. Glycobiology 8 (1998) 455-462. [PMID: 9597543]
Accepted name: GDP-Man:Man2GlcNAc2-PP-Dol α-1,6-mannosyltransferase
Reaction: GDP-D-mannose + D-Man-α-(1→3)-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol = GDP + D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol
Other name(s): Alg2 mannosyltransferase (ambiguous); ALG2 (gene name, ambiguous); GDP-Man:Man1GlcNAc2-PP-dolichol mannosyltransferase (ambiguous)
Systematic name: GDP-D-mannose:D-Man-α-(1→3)-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-6-mannosyltransferase
Comments: The biosynthesis of asparagine-linked glycoproteins utilizes a dolichyl diphosphate-linked glycosyl donor, which is assembled by the series of membrane-bound glycosyltransferases that comprise the dolichol pathway. Alg2 mannosyltransferase from Saccharomyces cerevisiae carries out an α1,3-mannosylation (cf. EC 2.4.1.132) of D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-GlcNAc-diphosphodolichol, followed by an α1,6-mannosylation, to form the first branched pentasaccharide intermediate of the dolichol pathway [1,2].
References:
1. Kampf, M., Absmanner, B., Schwarz, M. and Lehle, L. Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional α1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. J. Biol. Chem. 284 (2009) 11900-11912. [PMID: 19282279]
2. O'Reilly, M.K., Zhang, G. and Imperiali, B. In vitro evidence for the dual function of Alg2 and Alg11: essential mannosyltransferases in N-linked glycoprotein biosynthesis. Biochemistry 45 (2006) 9593-9603. [PMID: 16878994]
Accepted name: Dol-P-Man:Man5GlcNAc2-PP-Dol α-1,3-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol = D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→3)-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol + dolichyl phosphate
Other name(s): Man5GlcNAc2-PP-Dol mannosyltransferase; ALG3; dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase; Not56-like protein; Alg3 α-1,3-mannosyl transferase
Systematic name: dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,3-mannosyltransferase
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate. The first step of this assembly pathway on the luminal side of the endoplasmic reticulum is catalysed by ALG3.
References:
1. Sharma, C.B., Knauer, R. and Lehle, L. Biosynthesis of lipid-linked oligosaccharides in yeast: the ALG3 gene encodes the Dol-P-Man:Man5GlcNAc2-PP-Dol mannosyltransferase. Biol. Chem. 382 (2001) 321-328. [PMID: 11308030]
2. Cipollo, J.F. and Trimble, R.B. The accumulation of Man(6)GlcNAc(2)-PP-dolichol in the Saccharomyces cerevisiae Δalg9 mutant reveals a regulatory role for the Alg3p α1,3-Man middle-arm addition in downstream oligosaccharide-lipid and glycoprotein glycan processing. J. Biol. Chem. 275 (2000) 4267-4277. [PMID: 10660594]
Accepted name: Dol-P-Man:Man6GlcNAc2-PP-Dol α-1,2-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→3)-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol = D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol + dolichyl phosphate
Other name(s): ALG9; ALG9 α1,2 mannosyltransferase; dolichylphosphomannose-dependent ALG9 mannosyltransferase; ALG9 mannosyltransferase
Systematic name: dolichyl β-D-mannosyl phosphate: D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→3)-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,2-mannosyltransferase
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate. ALG9 mannosyltransferase catalyses the addition of two different α-1,2-mannose residues Ð the addition of α-1,2-mannose to Man6GlcNAc2-PP-Dol (EC 2.4.1.259) and the addition of α-1,2-mannose to Man8GlcNAc2-PP-Dol (EC 2.4.1.261).
References:
1. Vleugels, W., Keldermans, L., Jaeken, J., Butters, T.D., Michalski, J.C., Matthijs, G., Foulquier, F. Quality control of glycoproteins bearing truncated glycans in an ALG9-defective (CDG-IL) patient. Glycobiology 19 (2009) 910-917. [PMID: 19451548]
2. Cipollo, J.F. and Trimble, R.B. The accumulation of Man(6)GlcNAc(2)-PP-dolichol in the Saccharomyces cerevisiae Δalg9 mutant reveals a regulatory role for the Alg3p α1,3-Man middle-arm addition in downstream oligosaccharide-lipid and glycoprotein glycan processing. J. Biol. Chem. 275 (2000) 4267-4277. [PMID: 10660594]
3. Frank, C.G. and Aebi, M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 15 (2005) 1156-1163. [PMID: 15987956]
Accepted name: Dol-P-Man:Man7GlcNAc2-PP-Dol α-1,6-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol = D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol + dolichyl phosphate
Other name(s): ALG12; ALG12 mannosyltransferase; ALG12 α1,6mannosyltransferase; dolichyl-P-mannose:Man7GlcNAc2-PP-dolichyl mannosyltransferase; dolichyl-P-Man:Man7GlcNAc2-PP-dolichyl α6-mannosyltransferase; EBS4
Systematic name: dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,6-mannosyltransferase
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate.
References:
1. Frank, C.G. and Aebi, M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 15 (2005) 1156-1163. [PMID: 15987956]
2. Hong, Z., Jin, H., Fitchette, A.C., Xia, Y., Monk, A.M., Faye, L. and Li, J. Mutations of an α1,6 mannosyltransferase inhibit endoplasmic reticulum-associated degradation of defective brassinosteroid receptors in Arabidopsis. Plant Cell 21 (2009) 3792-3802. [PMID: 20023196]
3. Cipollo, J.F. and Trimble, R.B. The Saccharomyces cerevisiae alg12δ mutant reveals a role for the middle-arm α1,2Man- and upper-arm α1,2Manα1,6Man- residues of Glc3Man9GlcNAc2-PP-Dol in regulating glycoprotein glycan processing in the endoplasmic reticulum and Golgi apparatus. Glycobiology 12 (2002) 749-762. [PMID: 12460943]
4. Grubenmann, C.E., Frank, C.G., Kjaergaard, S., Berger, E.G., Aebi, M. and Hennet, T. ALG12 mannosyltransferase defect in congenital disorder of glycosylation type lg. Hum. Mol. Genet. 11 (2002) 2331-2339. [PMID: 12217961]
Accepted name: Dol-P-Man:Man8GlcNAc2-PP-Dol α-1,2-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol = D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol + dolichyl phosphate
Other name(s): ALG9; ALG9 α1,2 mannosyltransferase; dolichylphosphomannose-dependent ALG9 mannosyltransferase; ALG9 mannosyltransferase
Systematic name: dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-1,2-mannosyltransferase
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate. ALG9 mannosyltransferase catalyses the addition of two different α-1,2-mannose residues: the addition of α-1,2-mannose to Man6GlcNAc2-PP-Dol (EC 2.4.1.259) and the addition of α-1,2-mannose to Man8GlcNAc2-PP-Dol (EC 2.4.1.261).
References:
1. Vleugels, W., Keldermans, L., Jaeken, J., Butters, T.D., Michalski, J.C., Matthijs, G., Foulquier, F. Quality control of glycoproteins bearing truncated glycans in an ALG9-defective (CDG-IL) patient. Glycobiology 19 (0) 910-917. [PMID: 19451548]
2. Frank, C.G. and Aebi, M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 15 (2005) 1156-1163. [PMID: 15987956]
Accepted name: ditrans,polycis-undecaprenyl-diphosphate synthase [(2E,6E)-farnesyl-diphosphate specific]
Reaction: (2E,6E)-farnesyl diphosphate + 8 isopentenyl diphosphate = 8 diphosphate + ditrans,octacis-undecaprenyl diphosphate
For diagram of reaction click here
Other name(s): di-trans,poly-cis-undecaprenyl-diphosphate synthase; undecaprenyl-diphosphate synthase; bactoprenyl-diphosphate synthase; UPP synthetase; undecaprenyl diphosphate synthetase; undecaprenyl pyrophosphate; synthetase; di-trans,poly-cis-decaprenylcistransferase
Systematic name: (2E,6E)-farnesyl-diphosphate:isopentenyl-diphosphate cistransferase (adding 8 isopentenyl units)
Comments: Undecaprenyl pyrophosphate synthase catalyses the consecutive condensation reactions of a farnesyl diphosphate with eight isopentenyl diphosphates, in which new cis-double bonds are formed, to generate undecaprenyl diphosphate that serves as a lipid carrier for peptidoglycan synthesis of bacterial cell wall [3].
Links to other databases: BRENDA, EXPASY, KEGG, PDB, CAS registry number: 52350-87-5
References:
1. Muth, J.D. and Allen, C.M. Undecaprenyl pyrophosphate synthetase from Lactobacillus plantarum: a dimeric protein. Arch. Biochem. Biophys. 230 (1984) 49-60. [PMID: 6712246]
2. Takahashi, I. and Ogura, K. Prenyltransferases of Bacillus subtilis: undecaprenyl pyrophosphate synthetase and geranylgeranyl pyrophosphate synthetase. J. Biochem. (Tokyo) 92 (1982) 1527-1537. [PMID: 6818223]
3. Guo, R.T., Ko, T.P., Chen, A.P., Kuo, C.J., Wang, A.H. and Liang, P.H. Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: roles of the metal ion and conserved residues in catalysis. J. Biol. Chem. 280 (2005) 20762-20774. [PMID: 15788389]
4. Ko, T.P., Chen, Y.K., Robinson, H., Tsai, P.C., Gao, Y.G., Chen, A.P., Wang, A.H. and Liang, P.H. Mechanism of product chain length determination and the role of a flexible loop in Escherichia coli undecaprenyl-pyrophosphate synthase catalysis. J. Biol. Chem. 276 (2001) 47474-47482. [PMID: 11581264]
5. Fujikura, K., Zhang, Y.W., Fujihashi, M., Miki, K. and Koyama, T. Mutational analysis of allylic substrate binding site of Micrococcus luteus B-P 26 undecaprenyl diphosphate synthase. Biochemistry 42 (2003) 4035-4041. [PMID: 12680756]
6. Fujihashi, M., Zhang, Y.W., Higuchi, Y., Li, X.Y., Koyama, T. and Miki, K. Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. Proc. Natl. Acad. Sci. USA 98 (2001) 4337-4342. [PMID: 11287651]
7. Pan, J.J., Chiou, S.T. and Liang, P.H. Product distribution and pre-steady-state kinetic analysis of Escherichia coli undecaprenyl pyrophosphate synthase reaction. Biochemistry 39 (2000) 10936-10942. [PMID: 10978182]
8. Kharel, Y., Zhang, Y.W., Fujihashi, M., Miki, K. and Koyama, T. Significance of highly conserved aromatic residues in Micrococcus luteus B-P 26 undecaprenyl diphosphate synthase. J. Biochem. 134 (2003) 819-826. [PMID: 14769870]
Accepted name: tritrans,polycis-undecaprenyl-diphosphate synthase [geranylgeranyl-diphosphate specific]
Reaction: geranylgeranyl diphosphate + 7 isopentenyl diphosphate = 7 diphosphate + tritrans,heptacis-undecaprenyl diphosphate
Systematic name: geranylgeranyl-diphosphate:isopentenyl-diphosphate cistransferase (adding 7 isopentenyl units)
Comments: This enzyme is involved in the biosynthesis of the glycosyl carrier lipid in some archaebacteria. Unlike EC 2.5.1.31, its counterpart in most bacteria, it prefers geranylgeranyl diphosphate to farnesyl diphosphate as the allylic substrate, resulting in production of a tritrans,polycis variant of undecaprenyl diphosphate [1].
Links to other databases: BRENDA, EXPASY, KEGG, CAS registry number:
References:
1. Hemmi, H., Yamashita, S., Shimoyama, T., Nakayama, T. and Nishino, T. Cloning, expression, and characterization of cis-polyprenyl diphosphate synthase from the thermoacidophilic archaeon Sulfolobus acidocaldarius. J. Bacteriol. 183 (2001) 401-404. [PMID: 11114943]
Accepted name: (2Z,6Z)-farnesyl diphosphate synthase
Reaction: dimethylallyl diphosphate + 2 isopentenyl diphosphate = 2 diphosphate + (2Z,6Z)-farnesyl diphosphate
Other name(s): cis,cis-farnesyl diphosphate synthase; Z,Z-FPP synthase; zFPS; Z,Z-farnesyl pyrophosphate synthase
Systematic name: dimethylallyl-diphosphate:isopentenyl-diphosphate cistransferase (adding 2 isopentenyl units)
Comments: This enzyme, originally characterized from wild tomato, specifically forms (2Z,6Z)-farnesyl diphosphate via neryl diphosphate and isopentenyl diphosphate. In wild tomato it is involved in the biosynthesis of several sesquiterpenes. See also EC 2.5.1.68 [(2Z,6E)-farnesyl diphosphate synthase] and EC 2.5.1.10 [(2E,6E)-farnesyl diphosphate synthase].
Links to other databases: BRENDA, EXPASY, KEGG, CAS registry number:
References:
1. Sallaud, C., Rontein, D., Onillon, S., Jabes, F., Duffe, P., Giacalone, C., Thoraval, S., Escoffier, C., Herbette, G., Leonhardt, N., Causse, M. and Tissier, A. A novel pathway for sesquiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21 (2009) 301-317. [PMID: 19155349]
Accepted name: undecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose transferase
Reaction: UDP-4-deoxy-4-formamido-β-L-arabinopyranose + ditrans,octacis-undecaprenyl phosphate = UDP + 4-deoxy-4-formamido-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate
Other name(s): undecaprenyl-phosphate Ara4FN transferase; Ara4FN transferase; polymyxin resistance protein PmrF; UDP-4-amino-4-deoxy-α-L-arabinose:ditrans,polycis-undecaprenyl phosphate 4-amino-4-deoxy-α-L-arabinosyltransferase
Systematic name: UDP-4-amino-4-deoxy-α-L-arabinose:ditrans,octacis-undecaprenyl phosphate 4-amino-4-deoxy-α-L-arabinosyltransferase
Comments: The enzyme shows no activity with UDP-4-amino-4-deoxy-β-L-arabinose.
Links to other databases: BRENDA, EXPASY, KEGG, CAS registry number:
References:
1. Breazeale, S.D., Ribeiro, A.A. and Raetz, C.R. Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid a species modified with 4-amino-4-deoxy-L-arabinose. J. Biol. Chem. 277 (2002) 2886-2896. [PMID: 11706007]
2. Breazeale, S.D., Ribeiro, A.A., McClerren, A.L. and Raetz, C.R.H. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-amino-4-deoxy-L-arabinose. Identification and function of UDP-4-deoxy-4-formamido-L-arabinose. J. Biol. Chem. 280 (2005) 14154-14167. [PMID: 15695810]
Accepted name: UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase
Reaction: UDP-N-acetyl-D-glucosamine + ditrans,octacis-undecaprenyl phosphate = UMP + N-acetyl-D-glucosaminyldiphospho-ditrans,octacis-undecaprenol
Glossary: N-acetyl-D-glucosaminyldiphospho-ditrans,octacis-undecaprenol = lipid I = GlcNAc-pyrophosphorylundecaprenol = ditrans,octacis-undecaprenyl-N-acetyl-D-glucosaminyl diphosphate
Other name(s): UDP-N-acetylglucosamine:undecaprenyl-phosphate GlcNAc-1-phosphate transferase; WecA; WecA transferase; UDP-GIcNAc:undecaprenyl phosphate N-acetylglucosaminyl 1-P transferase; GlcNAc-P-P-Und synthase; GPT, TagO
Systematic name: UDP-N-acetyl-D-glucosamine:ditrans,octacis-undecaprenyl phosphate N-acetyl-D-glucosaminephosphotransferase
Comments: This enzyme catalyses the synthesis of ditrans,octacis-undecaprenyl-N-acetyl-D-glucosaminyl diphosphate (i.e. lipid I), an essential lipid intermediate for the biosynthesis of various bacterial cell envelope components. The enzyme also initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide in certain E. coli strains, including K-12 [2] and of teichoic acid in certain Gram-positive bacteria [4].
References:
1. Al-Dabbagh, B., Mengin-Lecreulx, D. and Bouhss, A. Purification and characterization of the bacterial UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase WecA. J. Bacteriol. 190 (2008) 7141-7146. [PMID: 18723618]
2. Lehrer, J., Vigeant, K.A., Tatar, L.D. and Valvano, M.A. Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide. J. Bacteriol. 189 (2007) 2618-2628. [PMID: 17237164]
4. Soldo, B., Lazarevic, V. and Karamata, D. tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology 148 (2002) 2079-2087. [PMID: 12101296]
Accepted name: fluoroacetyl-CoA thioesterase
Reaction: fluoroacetyl-CoA + H2O = fluoroacetate + CoA
Systematic name: fluoroacetyl-CoA hydrolase
Comments: Fluoroacetate is extremely toxic. It reacts with CoA to form fluoroacetyl-CoA, which substitutes for acetyl CoA and reacts with EC 2.3.3.1 (citrate synthase) to produce fluorocitrate, a metabolite of which binds very tightly to EC 4.2.1.3 (aconitase) and halts the TCA cycle. This enzyme hydrolyses fluoroacetyl-CoA before it can react with citrate synthase, and thus confers fluoroacetate resistance on the organisms that produce it. It has been described in the poisonous plant Dichapetalum cymosum and the bacterium Streptomyces cattleya, both of which are fluoroacetate producers.
References:
1. Meyer, J.J.M., Grobbelaar, N., Vleggaar, R. and Louw, A.I. Fluoroacetyl-coenzyme-A hydrolase-like activity in Dichapetalum cymosum. J. Plant Physiol. 139 (1992) 369-372.
2. Huang, F., Haydock, S.F., Spiteller, D., Mironenko, T., Li, T.L., O'Hagan, D., Leadlay, P.F. and Spencer, J.B. The gene cluster for fluorometabolite biosynthesis in Streptomyces cattleya: a thioesterase confers resistance to fluoroacetyl-coenzyme A. Chem. Biol. 13 (2006) 475-484. [PMID: 16720268]
3. Dias, M.V., Huang, F., Chirgadze, D.Y., Tosin, M., Spiteller, D., Dry, E.F., Leadlay, P.F., Spencer, J.B. and Blundell, T.L. Structural basis for the activity and substrate specificity of fluoroacetyl-CoA thioesterase FlK. J. Biol. Chem. 285 (2010) 22495-22504. [PMID: 20430898]
Accepted name: adenosylcobalamin/α-ribazole phosphatase
Reaction: (1) adenosylcobalamin 5'-phosphate + H2O = coenzyme B12 + phosphate
(2) α-ribazole 5'-phosphate + H2O = α-ribazole + phosphate
For diagram of the reaction click here
Other name(s): CobC; adenosylcobalamin phosphatase; α-ribazole phosphatase
Systematic name: adenosylcobalamin/α-ribazole-5'-phosphate phosphohydrolase
Comments: This enzyme catalyses the last step in the anaerobic (early cobalt insertion) pathway of adenosylcobalamin biosynthesis, characterized in Salmonella enterica [3]. It also participates in a salvage pathway that recycles cobinamide into adenosylcobalamin [1].
Links to other databases: BRENDA, EXPASY, KEGG, CAS registry number: 251991-06-7
References:
1. O'Toole, G.A., Trzebiatowski, J.R. and Escalante-Semerena, J.C. The cobC gene of Salmonella typhimurium codes for a novel phosphatase involved in the assembly of the nucleotide loop of cobalamin. J. Biol. Chem. 269 (1994) 26503-26511. [PMID: 7929373]
2. Warren, M.J., Raux, E., Schubert, H.L. and Escalante-Semerena, J.C. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19 (2002) 390-412. [PMID: 12195810]
3. Zayas, C.L. and Escalante-Semerena, J.C. Reassessment of the late steps of coenzyme B12 synthesis in Salmonella enterica: evidence that dephosphorylation of adenosylcobalamin-5'-phosphate by the CobC phosphatase is the last step of the pathway. J. Bacteriol. 189 (2007) 2210-2218. [PMID: 17209023]
Accepted name: purine nucleosidase
Reaction: a purine nucleoside + H2O = D-ribose + a purine base
Other name(s): nucleosidase (misleading); purine β-ribosidase; purine nucleoside hydrolase; purine ribonucleosidase; ribonucleoside hydrolase (misleading); nucleoside hydrolase (misleading); N-ribosyl purine ribohydrolase; nucleosidase g; N-D-ribosylpurine ribohydrolase; inosine-adenosine-guanosine preferring nucleoside hydrolase; purine-specific nucleoside N-ribohydrolase; IAG-nucleoside hydrolase; IAG-NH
Systematic name: purine-nucleoside ribohydrolase
Comments: The enzyme from the bacterium Ochrobactrum anthropi specifically catalyses the irreversible N-riboside hydrolysis of purine nucleosides. Pyrimidine nucleosides, purine and pyrimidine nucleotides, NAD+, NADP+ and nicotinaminde mononucleotide are not substrates [6].
Links to other databases: BRENDA, EXPASY, KEGG, CAS registry number: 9025-44-9
References:
1. Heppel, L.A. and Hilmoe, R.J. Phosphorolysis and hydrolysis of purine ribosides from yeast. J. Biol. Chem. 198 (1952) 683-694. [PMID: 12999785]
2. Kalckar, H.M. Biosynthetic aspects of nucleosides and nucleic acids. Pubbl. Staz. Zool. (Napoli) 23 (1951) 87-103.
3. Takagi, Y. and Horecker, B.L. Purification and properties of a bacterial riboside hydrolyase. J. Biol. Chem. 225 (1956) 77-86. [PMID: 13416219]
4. Tarr, H.L.A. Fish muscle riboside hydrolases. Biochem. J. 59 (1955) 386-391. [PMID: 14363106]
5. Parkin, D.W. Purine-specific nucleoside N-ribohydrolase from Trypanosoma brucei brucei. Purification, specificity, and kinetic mechanism. J. Biol. Chem. 271 (1996) 21713-21719. [PMID: 8702965]
6. Ogawa, J., Takeda, S., Xie, S.X., Hatanaka, H., Ashikari, T., Amachi, T. and Shimizu, S. Purification, characterization, and gene cloning of purine nucleosidase from Ochrobactrum anthropi. Appl. Environ. Microbiol. 67 (2001) 1783-1787. [PMID: 11282633]
7. Versées, W., Decanniere, K., Van Holsbeke, E., Devroede, N. and Steyaert, J. Enzyme-substrate interactions in the purine-specific nucleoside hydrolase from Trypanosoma vivax. J. Biol. Chem. 277 (2002) 15938-15946. [PMID: 11854281]
8. Mazumder-Shivakumar, D. and Bruice, T.C. Computational study of IAG-nucleoside hydrolase: determination of the preferred ground state conformation and the role of active site residues. Biochemistry 44 (2005) 7805-7817. [PMID: 15909995]
Accepted name: membrane dipeptidase
Reaction: Hydrolysis of dipeptides
Other name(s): renal dipeptidase; dehydropeptidase I (DPH I); dipeptidase (ambiguous); aminodipeptidase; dipeptide hydrolase (ambiguous); dipeptidyl hydrolase (ambiguous); nonspecific dipeptidase; glycosyl-phosphatidylinositol-anchored renal dipeptidase; MDP
Comments: A membrane-bound, zinc enzyme with broad specificity. Abundant in the kidney cortex. Inhibited by bestatin and cilastatin. Type example of peptidase family M19.
Links to other databases: BRENDA, EXPASY, KEGG, MEROPS, PDB, CAS registry number: 9031-99-6
References:
1. Campbell, B., Lin, H., Davis, R. and Ballew, E. The purification and properties of a particulate renal dipeptidase. Biochim. Biophys. Acta 118 (1966) 371-386. [PMID: 5961612]
2. Campbell, B.J. Renal dipeptidase. Methods Enzymol. 19 (1970) 722-729.
3. Kropp, H., Sundelof, J.G., Hajdu, R. and Kahan, F.M. Metabolism of thienamycin and related carbapenem antibiotics by renal dipeptidase, dehydropeptidase-I. Antimicrob. Agents Chemother. 22 (1982) 62-70. [PMID: 7125632]
4. Hooper, N.M., Keen, J.N. and Turner, A.J. Characterization of the glycosyl-phosphatidylinositol-anchored human renal dipeptidase reveals that it is more extensively glycosylated than the pig enzyme. Biochem. J. 265 (1990) 429-433. [PMID: 2137335]
Accepted name: peptidyl-dipeptidase A
Reaction: Release of a C-terminal dipeptide, oligopeptide┼Xaa-Yaa, when Xaa is not Pro, and Yaa is neither Asp nor Glu. Thus, conversion of angiotensin I to angiotensin II, with increase in vasoconstrictor activity, but no action on angiotensin II
Glossary: captopril = (2S)-1-(3-mercapto-2-methylpropanoyl)-L-proline
Other name(s): dipeptidyl carboxypeptidase I; peptidase P; dipeptide hydrolase (ambiguous); peptidyl dipeptidase; angiotensin converting enzyme; kininase II; angiotensin I-converting enzyme; carboxycathepsin; dipeptidyl carboxypeptidase; peptidyl dipeptidase I; peptidyl-dipeptide hydrolase; peptidyldipeptide hydrolase; endothelial cell peptidyl dipeptidase; ACE; peptidyl dipeptidase-4; PDH; peptidyl dipeptide hydrolase; DCP
Comments: A Cl-dependent, zinc glycoprotein that is generally membrane-bound. A potent inhibitor is captopril. Important in elevation of blood pressure, through formation of angiotensin II (vasoconstrictor) and destruction of bradykinin (vasodilator). Two molecular forms exist in mammalian tissues, a widely-distributed somatic form of 150- to 180-kDa that contains two non-identical catalytic sites, and a testicular form of 90- to 100-kDa that contains only a single catalytic site. Type example of peptidase family M2
Links to other databases: BRENDA, EXPASY, KEGG, MEROPS, PDB, CAS registry number: 9015-82-1
References:
1. Soubrier, F., Alhenc-Gelas, F., Hubert, C., Allegrini, J., John, M., Tregear, G. and Corvol, P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc. Natl. Acad. Sci. USA 85 (1988) 9386-9390. [PMID: 2849100]
2. Ehlers, M.R.W., Fox, E.A., Strydom, D.J. and Riordan, J.F. Molecular cloning of human testicular angiotensin-converting enzyme: the testis enzyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc. Natl. Acad. Sci. USA 86 (1989) 7741-7745. [PMID: 2554286]
3. Wei, L., Clauser, E., Alhenc-Gelas, F. and Corvol, P. The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. J. Biol. Chem. 267 (1992) 13398-13405. [PMID: 1320019]
4. Corvol, P., Williams, T.A. and Soubrier, F. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol. 248 (1995) 283-305. [PMID: 7674927]
Accepted name: carboxypeptidase D
Reaction: Preferential release of a C-terminal arginine or lysine residue
Other name(s): cereal serine carboxypeptidase II; Saccharomyces cerevisiae KEX1 gene product; carboxypeptidase Kex1; gene KEX1 serine carboxypeptidase; KEX1 carboxypeptidase; KEX1 proteinase; KEX1DELTAp; CPDW-II; serine carboxypeptidase (misleading); Phaseolus proteinase
Comments: A carboxypeptidase with optimum pH 4.5-6.0, inhibited by diisopropyl fluorophosphate, and sensitive to thiol-blocking reagents (reviewed in [1]). In peptidase family S10 (carboxypeptidase C family).
Links to other databases: BRENDA, EXPASY, KEGG, MEROPS, PDB, CAS registry number: 153967-26-1
References:
1. Breddam, K. Serine carboxypeptidases. A review. Carlsberg Res. Commun. 51 (1986) 83-128.
2. Breddam, K., Sørensen, S.B. and Svendsen, I. Primary structure and enzymatic properties of carboxypeptidase II from wheat bran. Carlsberg Res. Commun. 52 (1987) 297-311.
3. Dmochowska, A., Dignard, D., Henning, D., Thomas, D.Y. and Bussey, H. Yeast KEX1 gene encodes a putative protease with a carboxypeptidase B-like function involved in killer toxin and α-factor precursor processing. Cell 50 (1987) 573-584. [PMID: 3301004]
4. Liao, D.-I., Breddam, K., Sweet, R.M., Bullock, T. and Remington, S.J. Refined atomic model of wheat serine carboxypeptidase II at 2.2-Å resolution. Biochemistry 31 (1992) 9796-9812. [PMID: 1390755]
Accepted name: amidase
Reaction: a monocarboxylic acid amide + H2O = a monocarboxylate + NH3
Other name(s): acylamidase; acylase (misleading); amidohydrolase (ambiguous); deaminase (ambiguous); fatty acylamidase; N-acetylaminohydrolase (ambiguous)
Systematic name: acylamide amidohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, PDB, UM-BBD, CAS registry number: 9012-56-0
References:
1. Bray, H.G., James, S.P., Raffan, I.M., Ryman, B.E. and Thorpe, W.V. The fate of certain organic acids and amides in the rabbit. 7. An amidase of rabbit liver. Biochem. J. 44 (1949) 618-625. [PMID: 16748573]
2. Bray, H.G., James, S.P., Thorpe, W.V. and Wasdell, M.R. The fate of certain organic acids and amides in the rabbit. 11. Further observations on the hydrolysis of amides by tissue extracts. Biochem. J. 47 (1950) 294-299. [PMID: 14800883]
Accepted name: 6-methylsalicylate decarboxylase
Reaction: 6-methylsalicylate = 3-methylphenol + CO2
Glossary: 3-methylphenol = 3-cresol = m-cresol
Other name(s): 6-methylsalicylic acid (2,6-cresotic acid) decarboxylase; 6-MSA decarboxylase; 6-methylsalicylate carboxy-lyase
Systematic name: 6-methylsalicylate carboxy-lyase (3-methylphenol-forming)
Links to other databases: BRENDA, EXPASY, KEGG, CAS registry number: 37289-50-2
References:
1. Light, R.J. 6-Methylsalicylic acid decarboxylase from Penicillium patulum. Biochim. Biophys. Acta 191 (1969) 430-438. [PMID: 5354271]
2. Vogel, G. and Lynen, F. 6-Methylsalicylsäure-Decarboxylase. Naturwissenschaften 57 (1970) 664.
Accepted name: 4-oxalocrotonate decarboxylase
Reaction: 4-oxalocrotonate = 2-oxopent-4-enoate + CO2
Glossary: 4-oxalocrotonate = (2E)-5-oxohex-2-enedioate
Other name(s): 4-oxalocrotonate carboxy-lyase
Systematic name: 4-oxalocrotonate carboxy-lyase (2-oxopent-4-enoate-forming)
Comments: Involved in the meta-cleavage pathway for the degradation of phenols, methylphenols and catechols
Links to other databases: BRENDA, EXPASY, KEGG, UM-BBD, CAS registry number: 37325-55-6
References:
1. Shingler, V., Marklund, U., Powlowski, J. Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174 (1992) 711-724. [PMID: 1732207]
Accepted name: 4-hydroxy-2-oxovalerate aldolase
Reaction: 4-hydroxy-2-oxopentanoate = acetaldehyde + pyruvate
Glossary: valerate = pentanoate
Other name(s): 4-hydroxy-2-ketovalerate aldolase; HOA; DmpG; 4-hydroxy-2-oxovalerate pyruvate-lyase; 4-hydroxy-2-oxopentanoate pyruvate-lyase
Systematic name: 4-hydroxy-2-oxopentanoate pyruvate-lyase (acetaldehyde-forming)
Comments: Requires Mn2+ for maximal activity [1]. The enzyme from Pseudomonas putida is also stimulated by the presence of NADH [1]. In Pseudomonas species, this enzyme forms part of a bifunctional enzyme with EC 1.2.1.10, acetaldehyde dehydrogenase (acetylating). It catalyses the penultimate step in the meta-cleavage pathway for the degradation of phenols, methylphenols and catechol [1].
Links to other databases: BRENDA, EXPASY, KEGG, UM-BBD, CAS registry number: 37325-52-3
References:
1. Manjasetty, B.A., Powlowski, J. and Vrielink, A. Crystal structure of a bifunctional aldolase-dehydrogenase: sequestering a reactive and volatile intermediate. Proc. Natl. Acad. Sci. USA 100 (2003) 6992-6997. [PMID: 12764229]
2. Powlowski, J., Sahlman, L. and Shingler, V. Purification and properties of the physically associated meta-cleavage pathway enzymes 4-hydroxy-2-ketovalerate aldolase and aldehyde dehydrogenase (acylating) from Pseudomonas sp. strain CF600. J. Bacteriol. 175 (1993) 377-385. [PMID: 8419288]
3. Manjasetty, B.A., Croteau, N., Powlowski, J. and Vrielink, A. Crystallization and preliminary X-ray analysis of dmpFG-encoded 4-hydroxy-2-ketovalerate aldolase—aldehyde dehydrogenase (acylating) from Pseudomonas sp. strain CF600. Acta Crystallogr. D Biol. Crystallogr. 57 (2001) 582-585. [PMID: 11264589]
Accepted name: geosmin synthase
Reaction: (1E,4S,5E,7R)-germacra-1(10),5-dien-11-ol + H2O = ()-geosmin + acetone
Systematic name: germacradienol geosmin-lyase (acetone forming)
Comments: Requires Mg2+. Geosmin is the cause of the characteristic smell of moist soil. It is a bifunctional enzyme. The N-terminal part of the enzyme is EC 4.2.3.22, germacradienol synthase, and forms germacradienol from farnesyl diphosphate. The C-terminal part of the enzyme catalyses the conversion of germacradienol to geosmin via (1S,4aS,8aS)-8,10-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalene.
References:
1. Jiang, J., He, X. and Cane, D.E. Geosmin biosynthesis. Streptomyces coelicolor germacradienol/germacrene D synthase converts farnesyl diphosphate to geosmin. J. Am. Chem. Soc. 128 (2006) 8128-8129. [PMID: 16787064]
2. Cane, D.E., He, X., Kobayashi, S., Omura, S. and Ikeda, H. Geosmin biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and mechanistic study of the germacradienol/geosmin synthase. J. Antibiot. (Tokyo) 59 (2006) 471-479. [PMID: 17080683]
3. Jiang, J., He, X. and Cane, D.E. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat. Chem. Biol. 3 (2007) 711-715. [PMID: 17873868]
*EC 4.2.3.22 Accepted name: germacradienol synthase
Reaction: (1) (2E,6E)-farnesyl diphosphate + H2O = (1E,4S,5E,7R)-germacra-1(10),5-dien-11-ol + diphosphate
(2) (2E,6E)-farnesyl diphosphate = ()-(7S)-germacrene D + diphosphate
Other name(s): germacradienol/germacrene-D synthase; 2-trans,6-trans-farnesyl-diphosphate diphosphate-lyase [(1E,4S,5E,7R)-germacra-1(10),5-dien-11-ol-forming]
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(1E,4S,5E,7R)-germacra-1(10),5-dien-11-ol-forming]
Comments: Requires Mg2+ for activity. H-1si of farnesyl diphosphate is lost in the formation of (1E,4S,5E,7R)-germacra-1(10),5-dien-11-ol. Formation of ()-germacrene D involves a stereospecific 1,3-hydride shift of H-1si of farnesyl diphosphate. Both products are formed from a common intermediate [2]. Other enzymes produce germacrene D as the sole product using a different mechanism. The enzyme mediates a key step in the biosynthesis of geosmin (see EC 4.1.99.16 geosmin synthase), a widely occurring metabolite of many streptomycetes, bacteria and fungi [2].
Links to other databases: BRENDA, EXPASY, KEGG, PDB, CAS registry number: 211049-88-6
References:
1. Cane, D.E. and Watt, R.M. Expression and mechanistic analysis of a germacradienol synthase from Streptomyces coelicolor implicated in geosmin biosynthesis. Proc. Natl. Acad. Sci. USA 100 (2003) 1547-1551. [PMID: 12556563]
2. He, X. and Cane, D.E. Mechanism and stereochemistry of the germacradienol/germacrene D synthase of Streptomyces coelicolor A3(2). J. Am. Chem. Soc. 126 (2004) 2678-2679. [PMID: 14995166]
3. Gust, B., Challis, G.L., Fowler, K., Kieser, T. and Chater, K.F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100 (2003) 1541-1546. [PMID: 12563033]
Accepted name: 5-epiaristolochene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (+)-5-epiaristolochene + diphosphate
Other name(s): 5-epi-aristolochene synthase; tobacco epiaristolochene synthase; farnesyl pyrophosphate cyclase (ambiguous); EAS; TEAS
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-5-epiaristolochene-forming]
Comments: Initial cyclization gives (+)-germacrene A in an enzyme bound form which is not released to the medium.
References:
1. Back, K., Yin, S. and Chappell, J. Expression of a plant sesquiterpene cyclase gene in Escherichia coli. Arch. Biochem. Biophys. 315 (1994) 527-532. [PMID: 7986100]
2. Starks, C.M., Back, K., Chappell, J. and Noel, J.P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277 (1997) 1815-1820. [PMID: 9295271]
3. Back, K., He, S., Kim, K.U. and Shin, D.H. Cloning and bacterial expression of sesquiterpene cyclase, a key branch point enzyme for the synthesis of sesquiterpenoid phytoalexin capsidiol in UV-challenged leaves of Capsicum annuum. Plant Cell Physiol. 39 (1998) 899-904. [PMID: 9816674]
4. Rising, K.A., Starks, C.M., Noel, J.P. and Chappell, J. Demonstration of germacrene A as an intermediate in 5-epi-aristolochene synthase catalysis. J. Am. Chem. Soc. 122 (2000) 1861-1866.
5. Bohlmann, J., Stauber, E.J., Krock, B., Oldham, N.J., Gershenzon, J. and Baldwin, I.T. Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana attenuata and N. sylvestris. Phytochemistry 60 (2002) 109-116. [PMID: 12009313]
6. O'Maille, P.E., Chappell, J. and Noel, J.P. Biosynthetic potential of sesquiterpene synthases: alternative products of tobacco 5-epi-aristolochene synthase. Arch. Biochem. Biophys. 448 (2006) 73-82. [PMID: 16375847]
Accepted name: ()-γ-cadinene synthase
Reaction: (2Z,6E)-farnesyl diphosphate = ()-γ-cadinene + diphosphate
Other name(s): ()-γ-cadinene cyclase
Systematic name: (2Z,6E)-farnesyl-diphosphate diphosphate-lyase [()-γ-cadinene-forming]
References:
1. Nabeta, K., Fujita, M., Komuro, K., Katayama, K., and Takasawa, T. In vitro biosynthesis of cadinanes by cell-free extracts of cultured cells of Heteroscyphus planus. J. Chem. Soc., Perkin Trans. 1 (1997) 2065-2070.
Accepted name: (+)-cubenene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (+)-cubenene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-cubenene-forming]
Comments: Requires Mg2+.
References:
1. Nabeta, K., Kigure, K., Fujita, M., Nagoya, T., Ishikawa, T., Okuyama, H. and Takasawa, T. Bioynthesis of (+)-cubenene and (+)-epicubenol by cell-free extracts of cultured cells of Heteroscyphus planus and cyclization of [2H]farnesyl diphosphates. J. Chem. Soc., Perkin Trans. 1 (1995) 1935-1939.
2. Nabeta, K., Fujita, M., Komuro, K., Katayama, K., and Takasawa, T. In vitro biosynthesis of cadinanes by cell-free extracts of cultured cells of Heteroscyphus planus. J. Chem. Soc., Perkin Trans. 1 (1997) 2065-2070.
Accepted name: (+)-epicubenol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-epicubenol + diphosphate
Other name(s): farnesyl pyrophosphate cyclase (ambiguous)
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-epicubenol-forming]
Comments: Requires Mg2+. In the bacteria Streptomyces and the liverwort Heteroscyphus the (+)-isomer is formed in contrast to higher plants where the ()-isomer is formed.
References:
1. Cane, D.E., Tandon, M., and Prabhakaran, P.C. Epicubenol synthase and the enzymatic cyclization of farnesyl diphosphate. J. Am. Chem. Soc. 115 (1993) 8103-8106.
2. Cane, D.E. and Tandon, M. Biosynthesis of (+)-epicubenol. Tetrahedron Lett. 35 (1994) 5355-5358.
3. Cane, D.E. and Tandon, M. Epicubenol synthase and the stereochemistry of the enzymatic cyclization of farnesyl and nerolidyl diphosphate. J. Am. Chem. Soc. 117 (1995) 5602-5603.
4. Nabeta, K., Kigure, K., Fujita, M., Nagoya, T., Ishikawa, T., Okuyama, H. and Takasawa, T. Bioynthesis of (+)-cubenene and (+)-epicubenol by cell-free extracts of cultured cells of Heteroscyphus planus and cyclization of [2H]farnesyl diphosphates. J. Chem. Soc., Perkin Trans. 1 (1995) 1935-1939.
5. Nabeta, K., Fujita, M., Komuro, K., Katayama, K., and Takasawa, T. In vitro biosynthesis of cadinanes by cell-free extracts of cultured cells of Heteroscyphus planus. J. Chem. Soc., Perkin Trans. 1 (1997) 2065-2070.
Accepted name: zingiberene synthase
Reaction: (2E,6E)-farnesyl diphosphate = zingiberene + diphosphate
Other name(s): α-zingiberene synthase; ZIS
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (zingiberene-forming)
References:
1. Davidovich-Rikanati, R., Lewinsohn, E., Bar, E., Iijima, Y., Pichersky, E. and Sitrit, Y. Overexpression of the lemon basil α-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit. Plant J. 56 (2008) 228-238. [PMID: 18643974]
Accepted name: β-selinene cyclase
Reaction: (2E,6E)-farnesyl diphosphate = β-selinene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (β-selinene-forming)
Comments: Initial cyclization gives (+)-germacrene A in an enzyme bound form which is not released to the medium.
References:
1. Belingher, L., Cartayrade, A., Pauly, G. and Gleizes, M. Partial purification and properties of the sesquiterpene β-selinene cyclase from Citrofortunella mitis. Plant Sci. 84 (1992) 129-136.
Accepted name: cis-muuroladiene synthase
Reaction: (1) (2E,6E)-farnesyl diphosphate = cis-muurola-3,5-diene + diphosphate
(2) (2E,6E)-farnesyl diphosphate = cis-muurola-4(14),5-diene + diphosphate
Other name(s): MxpSS1
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cis-muuroladiene-forming)
Comments: The recombinant enzyme from black peppermint (Mentha x piperita) gave a mixture of cis-muurola-3,5-diene (45%) and cis-muurola-4(14),5-diene (43%).
References:
1. Prosser, I.M., Adams, R.J., Beale, M.H., Hawkins, N.D., Phillips, A.L., Pickett, J.A. and Field, L.M. Cloning and functional characterisation of a cis-muuroladiene synthase from black peppermint (Mentha × piperita) and direct evidence for a chemotype unable to synthesise farnesene. Phytochemistry 67 (2006) 1564-1571. [PMID: 16083926]
Accepted name: β-eudesmol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = β-eudesmol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (β-eudesmol-forming)
Comments: The recombinant enzyme from ginger (Zingiber zerumbet) gives 62.6% β-eudesmol, 16.8% 10-epi-γ-eudesmol, 10% α-eudesmol, and 5.6% aristolene.
References:
1. Yu, F., Harada, H., Yamasaki, K., Okamoto, S., Hirase, S., Tanaka, Y., Misawa, N. and Utsumi, R. Isolation and functional characterization of a β-eudesmol synthase, a new sesquiterpene synthase from Zingiber zerumbet Smith. FEBS Lett. 582 (2008) 565-572. [PMID: 18242187]
Accepted name: (+)-α-barbatene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (+)-α-barbatene + diphosphate
Other name(s): AtBS
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-α-barbatene-forming]
Comments: The recombinant enzyme from the plant Arabidopsis thaliana produces 27.3% α-barbatene, 17.8% thujopsene and 9.9% β-chamigrene [1] plus traces of other sesquiterpenoids [2].
References:
1. Wu, S., Schoenbeck, M.A., Greenhagen, B.T., Takahashi, S., Lee, S., Coates, R.M. and Chappell, J. Surrogate splicing for functional analysis of sesquiterpene synthase genes. Plant Physiol. 138 (2005) 1322-1333. [PMID: 15965019]
2. Tholl, D., Chen, F., Petri, J., Gershenzon, J. and Pichersky, E. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J. 42 (2005) 757-771. [PMID: 15918888]
Accepted name: patchoulol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = patchoulol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (patchoulol-forming)
References:
1. Croteau, R., Munck, S.L., Akoh, C.C., Fisk, H.J. and Satterwhite, D.M. Biosynthesis of the sesquiterpene patchoulol from farnesyl pyrophosphate in leaf extracts of Pogostemon cablin (patchouli): mechanistic considerations. Arch. Biochem. Biophys. 256 (1987) 56-68. [PMID: 3038029]
2. Munck, S.L. and Croteau, R. Purification and characterization of the sesquiterpene cyclase patchoulol synthase from Pogostemon cablin. Arch. Biochem. Biophys. 282 (1990) 58-64. [PMID: 2171435]
3. Faraldos, J.A., Wu, S., Chappell, J. and Coates, R.M. Doubly deuterium-labeled patchouli alcohol from cyclization of singly labeled [2-2H1]farnesyl diphosphate catalyzed by recombinant patchoulol synthase. J. Am. Chem. Soc. 132 (2010) 2998-3008. [PMID: 20148554]
Accepted name: (E,E)-germacrene B synthase
Reaction: (2E,6E)-farnesyl diphosphate = (E,E)-germacrene B + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(E,E)-germacrene-B-forming]
References:
1. van Der Hoeven, R.S., Monforte, A.J., Breeden, D., Tanksley, S.D. and Steffens, J.C. Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell 12 (2000) 2283-2294. [PMID: 11090225]
Accepted name: α-gurjunene synthase
Reaction: (2E,6E)-farnesyl diphosphate = ()-α-gurjunene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [()-α-gurjunene-forming]
Comments: Initial cyclization probably gives biyclogermacrene in an enzyme bound form which is not released to the medium. The enzyme from Solidago canadensis also forms a small amount of (+)-γ-gurjunene [1].
References:
1. Schmidt, C.O., Bouwmeester, H.J., Bulow, N. and Konig, W.A. Isolation, characterization, and mechanistic studies of ()-α-gurjunene synthase from Solidago canadensis. Arch. Biochem. Biophys. 364 (1999) 167-177. [PMID: 10190971]
Accepted name: valencene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (+)-valencene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (valencene-forming)
Comments: The recombinant enzyme from Vitis vinifera gave 49.5% (+)-valencene and 35.5% ()-7-epi-α-selinene. Initial cyclization gives (+)-germacrene A in an enzyme bound form which is not released to the medium.
References:
1. Lucker, J., Bowen, P. and Bohlmann, J. Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and ()-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries. Phytochemistry 65 (2004) 2649-2659. [PMID: 15464152]
Accepted name: erythro-3-hydroxy-L-aspartate ammonia-lyase
Reaction: erythro-3-hydroxy-L-aspartate = oxaloacetate + ammonia
Other name(s): erythro-β-hydroxyaspartate dehydratase; erythro-3-hydroxyaspartate dehydratase; erythro-3-hydroxy-Ls-aspartate hydro-lyase (deaminating); erythro-3-hydroxy-Ls-aspartate ammonia-lyase
Systematic name: erythro-3-hydroxy-L-aspartate ammonia-lyase (oxaloacetate-forming)
Comments: A pyridoxal-phosphate protein. The enzyme, which was characterized from the bacterium Paracoccus denitrificans NCIMB 8944, is highly specific for the L-isomer of erythro-3-hydroxyaspartate. Different from EC 4.3.1.16, threo-3-hydroxy-L-aspartate ammonia-lyase and EC 4.3.1.27, threo-3-hydroxy-D-aspartate ammonia-lyase. Requires a divalent cation such as Mn2+, Mg2+, and Ca2+.
Links to other databases: BRENDA, EXPASY, KEGG, CAS registry number: 37290-74-7
References:
1. Gibbs, R.G. and Morris, J.G. Purification and properties of erythro-β-hydroxyaspartate dehydratase from Micrococcus denitrificans. Biochem. J. 97 (1965) 547-554. [PMID: 16749162]
Accepted name: acetophenone carboxylase
Reaction: 2 ATP + acetophenone + HCO3- + H2O + H+ = 2 ADP + 2 phosphate + 3-oxo-3-phenylpropanoate
Systematic name: acetophenone:carbon-dioxide ligase (ADP-forming)
Comments: The enzyme is involved in anaerobic degradation of ethylbenzene. No activity with acetone, butanone, 4-hydroxy-acetophenone or 4-amino-acetophenone.
References:
1. Jobst, B., Schuhle, K., Linne, U. and Heider, J. ATP-dependent carboxylation of acetophenone by a novel type of carboxylase. J. Bacteriol. 192 (2010) 1387-1394. [PMID: 20047908]